1

我正在尝试查找导致某些疾病的 ICD10 代码。但是 ICD10 具有字母数字分类,例如 A00.00 。有 1000 种这样的分类,但我不确定如何在我的回归模型中使用它们。请有任何建议。

数据 患者 现有 ICD10 糖尿病 (Y) P1 A00.10 1 P2 A00.20 0 P1 C00.1 1 P3 Z01 1 ....

4

3 回答 3

0

您可能希望在具有一个或多个层的变量中解码 ICD10。一种方法可能是生成一个变量为 dat$diabates,级别为 0(无疾病)和 1(疾病)。一种方法可能是使用 grepl。顺便说一下,ICD10 代码中糖尿病的常见模式是 E08(请查看http://eicd10.com/index.php?srchtext=diabetes&Submit=Search&action=search),而不是 A00 是霍乱。

dat$diabates <- as.integer(grepl(pattern = "E08", x = dat$ICD10))
###Add to pattern a common pattern in ICD 10 code
as.numeric(as.character(dat$diabetes))->dat$diabetes

如果您有几个不同的模式(对每个模式重复该过程),那么您可能会生成新变量并将它们合并。例如:

dat$diabetes_final<-0 
dat$diabetes_final[which(dat$diabetes1 ==1 | dat$diabetes2==1)]<-1
于 2019-04-01T07:50:30.223 回答
0

我建议将“健康”设置为包含诊断的因子变量的参考水平,因为这将为您提供当您比较健康患者与患有某种疾病的患者时您的因变量如何变化的系数。当然,您可以按照 Jean-Claude Arbaut 的建议对疾病进行分组。

这可能看起来像这样:

# your vector with the diagnosis
diagnosis <- c("healthy", "P1 A00.10 1", "P2 A00.20 0", "P1 C00.1 1", "P3 Z01 1")

# grouping your vector. I have no idea about ICD10 groups, so this is only to show how this would work in R
diagnosis[diagnosis %in% c("P1 A00.10 1", "P2 A00.20 0")] <- "diabetes"
diagnosis[diagnosis %in% c("P1 C00.1 1", "P3 Z01 1")] <- "cancer"

# make the vector a factor with healthy as the reference
diagnosis <- factor(diagnosis)
diagnosis <- relevel(diagnosis, ref = "healthy")

# now you can use the variable in a regression
set.seed(1) # making it reproducible
dv <- rnorm(length(diagnosis)) # generating a dependent variable
summary(lm(dv ~ diagnosis)) # linear regression

# the coeficients look like this
...
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)        -0.6265     0.8126  -0.771    0.521
diagnosiscancer     1.5888     0.9952   1.597    0.251
diagnosisdiabetes   0.3005     0.9952   0.302    0.791
...
于 2019-04-01T08:27:24.207 回答
0

一个有效的方法是使用合并症的概念。我的 R 包icd为标准化的疾病集执行此操作,例如“糖尿病”、“癌症”、“心脏病”。有多种合并症地图可供选择,因此您可以选择与您的兴趣一致的地图,例如 icd 中的 PCCC 地图可用于儿科,其他用于成人并跨越各种疾病状态。

例如,如介绍小插图中所述。这些实际上是 ICD-9 代码,但您可以使用 ICD-10。

patients <- data.frame(
   visit_id = c(1000, 1000, 1000, 1000, 1001, 1001, 1002),
   icd9 = c("40201", "2258", "7208", "25001", "34400", "4011", "4011"),
   poa = c("Y", NA, "N", "Y", "X", "Y", "E"),
   stringsAsFactors = FALSE
   )
patients
  visit_id  icd9  poa
1     1000 40201    Y
2     1000  2258 <NA>
3     1000  7208    N
4     1000 25001    Y
5     1001 34400    X
6     1001  4011    Y
7     1002  4011    E
icd::comorbid_ahrq(patients)
CHF Valvular  PHTN   PVD  HTN Paralysis NeuroOther Pulmonary    DM  DMcx Hypothyroid Renal Liver
1000  TRUE    FALSE FALSE FALSE TRUE     FALSE      FALSE     FALSE  TRUE FALSE       FALSE FALSE FALSE
1001 FALSE    FALSE FALSE FALSE TRUE      TRUE      FALSE     FALSE FALSE FALSE       FALSE FALSE FALSE
1002 FALSE    FALSE FALSE FALSE TRUE     FALSE      FALSE     FALSE FALSE FALSE       FALSE FALSE FALSE
       PUD   HIV Lymphoma  Mets Tumor Rheumatic Coagulopathy Obesity WeightLoss FluidsLytes BloodLoss
1000 FALSE FALSE    FALSE FALSE FALSE      TRUE        FALSE   FALSE      FALSE       FALSE     FALSE
1001 FALSE FALSE    FALSE FALSE FALSE     FALSE        FALSE   FALSE      FALSE       FALSE     FALSE
1002 FALSE FALSE    FALSE FALSE FALSE     FALSE        FALSE   FALSE      FALSE       FALSE     FALSE
     Anemia Alcohol Drugs Psychoses Depression
1000  FALSE   FALSE FALSE     FALSE      FALSE
1001  FALSE   FALSE FALSE     FALSE      FALSE
1002  FALSE   FALSE FALSE     FALSE      FALSE

“DM”是糖尿病,“DMcx”是伴有并发症的糖尿病,例如视网膜病变或肾功能衰竭。这是对标准 Elixhauser 类别的美国 AHRQ 修改。

当您有疾病状态的二进制标志时,您可以在任何统计或机器学习模型中使用它们。

于 2019-04-08T21:18:48.337 回答