您可以通过从类继承来创建自定义单元格SimpleRNNCell
,如下所示:
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.activations import get as get_activation
from tensorflow.keras.layers import SimpleRNNCell, RNN, Layer
from tensorflow.keras.layers.experimental import LayerNormalization
class SimpleRNNCellWithLayerNorm(SimpleRNNCell):
def __init__(self, units, **kwargs):
self.activation = get_activation(kwargs.get("activation", "tanh"))
kwargs["activation"] = None
super().__init__(units, **kwargs)
self.layer_norm = LayerNormalization()
def call(self, inputs, states):
outputs, new_states = super().call(inputs, states)
norm_out = self.activation(self.layer_norm(outputs))
return norm_out, [norm_out]
SimpleRNN
此实现在没有任何的情况下运行一个常规单元activation
,然后将层范数应用于结果输出,然后应用activation
. 然后你可以像这样使用它:
model = Sequential([
RNN(SimpleRNNCellWithLayerNorm(20), return_sequences=True,
input_shape=[None, 20]),
RNN(SimpleRNNCellWithLayerNorm(5)),
])
model.compile(loss="mse", optimizer="sgd")
X_train = np.random.randn(100, 50, 20)
Y_train = np.random.randn(100, 5)
history = model.fit(X_train, Y_train, epochs=2)
对于 GRU 和 LSTM 单元,人们通常在门上应用层范数(在输入和状态的线性组合之后,在 sigmoid 激活之前),所以实现起来有点棘手。或者,您可以通过在应用activation
and之前应用层规范来获得良好的结果recurrent_activation
,这将更容易实现。