1

I'm currently attempting to write an algorithm for optimizing matrix multiplication over GF(2) using bit-packing. Both matrices A and B are provided in column major order so I start by copying A into row-major order and then packing the values into 8-bit integers and using parity checking to speed up operations. I need to be able to test square matrices of up to 2048x2048, however, my current implementation provides the correct answer up to 24x24 and then fails to compute the correct result. Any help would be appreciated.

//Method which packs an array of integers into 8 bits
uint8_t pack(int *toPack) {
    int i;
    uint8_t A;
    A = 0;
    for (i = 0; i < 8; i++) {
        A = (A << 1) | (uint8_t)toPack[i];
    }
    return A;
}

//Method for doing matrix multiplication over GF(2)
void matmul_optimized(int n, int *A, int *B, int *C) {
    int i, j, k;
    //Copying values of A into a row major order matrix.
    int *A_COPY = malloc(n * n * sizeof(int));
    int copy_index = 0;
    for (i = 0; i < n; i++) {
        for (j = 0; j < n; j++) {
            A_COPY[copy_index] = A[i + j * n];
            copy_index++;
        }
    }
    //Size of the data data type integers will be packed into
    const int portion_size = 8;
    int portions = n / portion_size;

    //Pointer space reserved to store packed integers in row major order
    uint8_t *compressedA = malloc(n * portions * sizeof(uint8_t));
    uint8_t *compressedB = malloc(n * portions * sizeof(uint8_t));

    int a[portion_size];
    int b[portion_size];
    for (i = 0; i < n; i++) {
        for (j = 0; j < portions; j++) {
            for (k = 0; k < portion_size; k++) {
                a[k] = A_COPY[i * n + j * portion_size + k];
                b[k] = B[i * n + j * portion_size + k];
            }
            compressedA[i * n + j] = pack(a);
            compressedB[i * n + j] = pack(b);
        }
    }

    //Calculating final matrix using parity checking and XOR on A and B
    int cij;
    for (i = 0; i < n; ++i) {
        for (j = 0; j < n; ++j) {
            int cIndex = i + j * n;
            cij = C[cIndex];
            for (k = 0; k < portions; ++k) {
                uint8_t temp = compressedA[k + i * n] & compressedB[k + j * n];
                temp ^= temp >> 4;
                temp ^= temp >> 2;
                temp ^= temp >> 1;
                uint8_t parity = temp & (uint8_t)1;
                cij = cij ^ parity;
            }
            C[cIndex] = cij;
        }
    }
    free(compressedA);
    free(compressedB);
    free(A_COPY);
}
4

1 回答 1

2

我有两点意见:

  • 您可能应该初始化cij0而不是cij = C[cIndex];. 更新目标矩阵而不是存储A * B. 巧合的是,您的代码可能适用于小矩阵,因为目标矩阵C恰好是这个大小的全零。

  • 计算分配大小是有风险的,malloc(n * n * sizeof(int));因为如果小于,n * n可能会溢出。鉴于您使用的大小,这可能不是问题,但始终使用作为第一个操作数来强制转换为以下操作数是个好主意:int nintsize_tsizeofsize_t

    int *A_COPY = malloc(sizeof(*A_COPY) * n * n);
    
于 2019-03-15T20:16:12.120 回答