我是 GPU 相关模型训练的新手。我有带有 6GB GPU 的 Tesla C2075,并使用 keras CuDNNLSTM 进行更快的训练。我已经使用 cudnn=7.0.5、tensorflow-gpu==1.12.0 并使用 ubuntu 16.04 安装了 cuda-9。对于 Tesla C2075 GPU 型号是否兼容 cuda-9?我已经检查了https://developer.nvidia.com/cuda-gpus链接,他们提到 tesla C2075 与 2.0 计算兼容。什么是计算兼容?
在运行我的模型张量流日志时,
tensorflow/core/common_runtime/gpu/gpu_device.cc:1482] Ignoring visible gpu device (device: 0, name: Tesla C2075, pci bus id: 0000:03:00.0, compute capability: 2.0) with Cuda compute capability 2.0. The minimum required Cuda capability is 3.5.
而且我在model.fit(...)时也遇到了错误,
InvalidArgumentError (see above for traceback): No OpKernel was registered to support Op 'CudnnRNN' with these attrs. Registered devices: [CPU,XLA_CPU,XLA_GPU], Registered kernels:
device='GPU'; T in [DT_DOUBLE]
device='GPU'; T in [DT_FLOAT]
device='GPU'; T in [DT_HALF]
[[node bidirectional_1/CudnnRNN (defined at /usr/local/lib/python3.5/dist-packages/tensorflow/contrib/cudnn_rnn/python/ops/cudnn_rnn_ops.py:922) = CudnnRNN[T=DT_FLOAT, direction="unidirectional", dropout=0, input_mode="linear_input", is_training=true, rnn_mode="lstm", seed=87654321, seed2=0](bidirectional_1/transpose, bidirectional_1/ExpandDims_1, bidirectional_1/ExpandDims_2, bidirectional_1/concat)]]
谢谢