1

我有这个数据框

df:
     payout  person1 person2      date    
1    300.0     LA       NaN     2012-02-01  
2    500.0     DO       NaN     2012-02-01  
3    600.0     DO       NaN     2012-02-01  
4    300.0     DO       NaN     2012-01-01  
5    500.0     DO       NaN     2012-01-01  
6    1000.0    DO       AL      2012-01-01  
7    800.0     DO       AL      2012-01-01 

在一个单独的 Dataframe 中,我需要分别为每个 person1 汇总每个唯一月份和年份的所有支出。然后,如果 person2 存在,我需要在 person1 和 person2 之间分配支出(在每个月的总和之后)。
输出应该是这样的:

df:
         person     date         sum 
    1    LA         2012-02-01    300.0 
    2    DO         2012-02-01    1100.0        
    3    DO         2012-01-01    1700.0
    4    AL         2012-01-01    900.0 
4

2 回答 2

2

可能不那么优雅,但适用于这种情况:

m1=(df[df.person2.isna()].groupby([df.date.dt.date,'person1'])
   .payout.sum().reset_index().rename(columns={'person1':'person'}))

m2=df.dropna().groupby([df.date.dt.date,'person1','person2']).payout.mean().reset_index()

df_new=(m1.merge(m2.melt(['date','payout'],value_name='person').
          drop('variable',1),how='outer').groupby(['date','person'],as_index=False).sum())

print(df_new)

         date person  payout
0  2012-01-01     AL   900.0
1  2012-01-01     DA  1700.0
2  2012-02-01     DA  1100.0
3  2012-02-01     LA   300.0
于 2019-03-11T19:32:21.767 回答
1

如果 person2 列中有人np.where

df['payout_sum'] = np.where(df.person2.notnull(), df.payout/2., df.payout)

然后使用concat,groupbypd.Grouper,可以得到结果:

df_tot = (pd.concat([df[['date','person1','payout_sum']].rename(columns={'person1':'person'}),
                     df[['date','person2','payout_sum']].rename(columns={'person2':'person'})
                                                          .dropna()])\
            .groupby([pd.Grouper(key='date', freq='MS'),'person'])['payout_sum']
            .sum().reset_index())
print (df_tot)
        date person  payout_sum
0 2012-01-01     AL       900.0
1 2012-01-01     DA      1700.0
2 2012-02-01     DA      1100.0
3 2012-02-01     LA       300.0

使用pd.Grouper“MS”的好处是它会在月初重新采样,以防您在一个月内有几天付款。

于 2019-03-11T19:44:28.360 回答