0

尝试基于部分预训练模型构建新模型,

这是一些清理后的代码。

假设我们训练了 model1,并且想要添加一些在 model2 中定义的层:

import tensorflow.keras as keras
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv2D, Activation
from tensorflow.keras.models import Model, Sequential

model1 = Sequential([
    Conv2D(2, (3,3), padding='same', input_shape=(6,6,1)),
    Activation('relu')
])
model2 = Sequential([
    Conv2D(3, (3,3), padding='same', input_shape=(6,6,2)),
    Activation('softmax')
])

model_merge = Model(inputs=model1.input, 
                    outputs=Activation('softmax')(model2(model1.get_layer('conv2d').output)))

它看起来有点乱,但我想通过在此处添加 softmax 激活来证明它没有断开连接。

模型1总结:

_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d (Conv2D)              (None, 6, 6, 2)           20        
_________________________________________________________________
activation (Activation)      (None, 6, 6, 2)           0         
=================================================================
Total params: 20
Trainable params: 20
Non-trainable params: 0
_________________________________________________________________

模型2总结:

_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_4 (Conv2D)            (None, 6, 6, 3)           57        
_________________________________________________________________
activation_4 (Activation)    (None, 6, 6, 3)           0         
=================================================================
Total params: 57
Trainable params: 57
Non-trainable params: 0
_________________________ 

以及model_merge的总结:

_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_input (InputLayer)    (None, 6, 6, 1)           0         
_________________________________________________________________
conv2d (Conv2D)              (None, 6, 6, 2)           20        
_________________________________________________________________
sequential_2 (Sequential)    (None, 6, 6, 3)           57        
_________________________________________________________________
activation_4 (Activation)    (None, 6, 6, 3)           0         
=================================================================
Total params: 77
Trainable params: 77
Non-trainable params: 0
_________________________________________________________________

让我们证明这个合并的模型没有断开:

layers = [layer.output for layer in model_merge.layers]
test1 = Model(inputs=model_merge.input, outputs=layers[-1])

一切正常。

test1的总结:

_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_input (InputLayer)    (None, 6, 6, 1)           0         
_________________________________________________________________
conv2d (Conv2D)              (None, 6, 6, 2)           20        
_________________________________________________________________
sequential_2 (Sequential)    (None, 6, 6, 3)           57        
_________________________________________________________________
activation_4 (Activation)    (None, 6, 6, 3)           0         
=================================================================
Total params: 77
Trainable params: 77
Non-trainable params: 0
_________________________________________________________________

悲剧就在这里:

test2 = Model(inputs=model_merge.input, outputs=layers[-2])

最重要的反馈:

ValueError: Graph disconnected: cannot obtain value for tensor Tensor("conv2d_2_input:0", shape=(?, 6, 6, 2), dtype=float32) at layer "conv2d_2_input". The following previous layers were accessed without issue: []

完整反馈:

ValueErrorTraceback (most recent call last)
<ipython-input-18-946b325081c1> in <module>
----> 1 test = Model(inputs=model_merge.input, outputs=layers[-2])

/usr/local/lib/python3.5/dist-packages/tensorflow/python/keras/engine/training.py in __init__(self, *args, **kwargs)
    119 
    120   def __init__(self, *args, **kwargs):
--> 121     super(Model, self).__init__(*args, **kwargs)
    122     # Create a cache for iterator get_next op.
    123     self._iterator_get_next = weakref.WeakKeyDictionary()

/usr/local/lib/python3.5/dist-packages/tensorflow/python/keras/engine/network.py in __init__(self, *args, **kwargs)
     79         'inputs' in kwargs and 'outputs' in kwargs):
     80       # Graph network
---> 81       self._init_graph_network(*args, **kwargs)
     82     else:
     83       # Subclassed network

/usr/local/lib/python3.5/dist-packages/tensorflow/python/training/checkpointable/base.py in _method_wrapper(self, *args, **kwargs)
    440     self._setattr_tracking = False  # pylint: disable=protected-access
    441     try:
--> 442       method(self, *args, **kwargs)
    443     finally:
    444       self._setattr_tracking = previous_value  # pylint: disable=protected-access

/usr/local/lib/python3.5/dist-packages/tensorflow/python/keras/engine/network.py in _init_graph_network(self, inputs, outputs, name)
    219     # Keep track of the network's nodes and layers.
    220     nodes, nodes_by_depth, layers, layers_by_depth = _map_graph_network(
--> 221         self.inputs, self.outputs)
    222     self._network_nodes = nodes
    223     self._nodes_by_depth = nodes_by_depth

/usr/local/lib/python3.5/dist-packages/tensorflow/python/keras/engine/network.py in _map_graph_network(inputs, outputs)
   1850                              'The following previous layers '
   1851                              'were accessed without issue: ' +
-> 1852                              str(layers_with_complete_input))
   1853         for x in node.output_tensors:
   1854           computable_tensors.append(x)

ValueError: Graph disconnected: cannot obtain value for tensor Tensor("conv2d_2_input:0", shape=(?, 6, 6, 2), dtype=float32) at layer "conv2d_2_input". The following previous layers were accessed without issue: []

真的快把我逼疯了

有任何想法吗?

4

1 回答 1

0

您尝试用作输出的层有两个输出节点。第一个将 的输入连接model2到 的输出model2。第二个输出节点连接model1第 1 层和第 1 层的输出model2。默认情况下,图层输出仅返回第一个输出节点。所以正在发生的事情是您正在将model_merge(的输入model1)的输入与第一个输出节点连接起来。

以下代码显示了这一点。可以使用层的get_output_at()方法访问层的各个输出节点。

layer_output = model_merge.layers[-2].output # The first output node
layer_output_1 = model_merge.layers[-2].get_output_at(0) # The first output node
layer_output_2 = model_merge.layers[-2].get_output_at(1) # The second output node

现在以下两个代码会抛出错误,因为图形已断开连接。

test2 = Model(inputs=model_merge.input, outputs=layer_output)

test2 = Model(inputs=model_merge.input, outputs=layer_output_1)

但是下面的代码不会抛出错误,因为图是连接的。

test2 = Model(inputs=model_merge.input, outputs=layer_output_2)
于 2019-03-09T07:33:26.667 回答