我已经为欺诈预测创建了 h20 随机森林模型。现在使用预测函数对测试数据进行评分。我从预测函数输出得到以下数据框。
现在对于第二条记录,它预测为 1,但 p1 的概率远小于 p0。我们可以用于我的欺诈预测模型的正确概率分数 (p0/1) 和分类是多少?
如果这些不是正确的概率,那么使用下面提到的参数(calibrate_model = True)计算的校准概率将给出正确的概率?
nfolds=5
rf1 = h2o.estimators.H2ORandomForestEstimator(
model_id = "rf_df1",
ntrees = 200,
max_depth = 4,
sample_rate = .30,
# stopping_metric="misclassification",
# stopping_rounds = 2,
mtries = 6,
min_rows = 12,
nfolds=3,
distribution = "multinomial",
fold_assignment="Modulo",
keep_cross_validation_predictions=True,
calibrate_model = True,
calibration_frame = calib,
weights_column = "weight",
balance_classes = True
# stopping_tolerance = .005)
)
predict p0 p1
1 0 0.9986012 0.000896514
2 1 0.9985695 0.000448676
3 0 0.9981387 0.000477767