我对python很陌生。在过去的两天里,我一直试图弄清楚如何使用 matplotlib 缩放 3d 图(天线辐射图案)的颜色。看起来缩放在 xyz 轴之一中起作用,但在缩放从原点(半径)开始时不起作用。非常感谢任何帮助。
这不是我的代码,但我发现它非常有用。
这是代码:
值是从excel文档中读取的
如您所见,我正在尝试使用此命令
colors=plt.cm.jet((R)/(Rmax))
,但它不起作用。import pandas as pd import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.mplot3d.axes3d as axes3d # Read data file and plot df = pd.read_csv('EIRP_Data.csv') #henter data fra Excel theta1d = df['Theta'] theta1d = np.array(theta1d); theta2d = theta1d.reshape([37,73]) #"Theta" kolonen blir hentet ut, satt i numpy array og gjort om til 2d array phi1d = df['Phi'] phi1d = np.array(phi1d); phi2d = phi1d.reshape([37,73]) #"Phi" kolonen blir hentet ut, satt i numpy array og gjort om til 2d Array power1d = df['Power'] power1d = np.array(power1d); power2d = power1d.reshape([37,73]) #"Power" kolonen blir hentet ut, satt i numpy array og gjort om til 2d array THETA = np.deg2rad(theta2d) PHI = np.deg2rad(phi2d) R = power2d Rmax = np.max(R) Rmin = np.min(R) N = R / Rmax #Gjør om polar til kartesisk X = R * np.sin(THETA) * np.cos(PHI) Y = R * np.sin(THETA) * np.sin(PHI) Z = R * np.cos(THETA) fig = plt.figure() #plot spesifikasjoner/settings ax = fig.add_subplot(1,1,1, projection='3d') ax.grid(True) ax.axis('on') ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_zticklabels([]) #colors =plt.cm.jet( (X.max()-X)/float((X-X.min()).max())) colors =plt.cm.jet( (R)/(Rmax) ) ax.plot_surface( X, Y, Z, rstride=1, cstride=1, facecolors=colors, linewidth=0, antialiased=True, alpha=0.5, zorder = 0.5) ax.view_init(azim=300, elev = 30) # Add Spherical Grid phi ,theta = np.linspace(0, 2 * np.pi, 40), np.linspace(0, np.pi, 40) PHI, THETA = np.meshgrid(phi,theta) R = Rmax X = R * np.sin(THETA) * np.cos(PHI) Y = R * np.sin(THETA) * np.sin(PHI) Z = R * np.cos(THETA) ax.plot_wireframe(X, Y, Z, linewidth=0.5, rstride=20, cstride=20) plt.show()