3

这是我找到并稍作修改的代码。如何从原点缩放颜色并从原点设置轴以进行可视化?我试图找到信息,但其中大部分是用于二维图的。

在这里,我添加了两个以 45 度为间隔的数组和一个表示信号功率的随机数数组thetaphi该图有效,但信号和间隔并不完全正确。我的目标是从原点添加轴并从原点缩放颜色。

import pandas as pd
import numpy as np
import scipy as sci
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d.axes3d as Axes3D
from matplotlib import cm, colors
from array import *
import random

#theta 
vals_theta = array('i',[0,0,0,0,0,0,0,0,0,45,45,45,45,45,45,45,45,45,90,90,90, 
                        90,90,90,90,90,90,135,135,135,135,135,135,135,135,135,
                        180,180,180,180,180,180,180,180,180])
#phi
vals_phi = array('i',[0,45,90,135,180,225,270,315,360,
                      0,45,90,135,180,225,270,315,360,
                      0,45,90,135,180,225,270,315,360,
                      0,45,90,135,180,225,270,315,360,
                      0,45,90,135,180,225,270,315,360])
#random numbers simulating the power data
vals_power = np.random.uniform(low=-7.2E-21, high=7.2E-21, size=(45,))

theta1d = vals_theta
theta1d = np.array(theta1d);
theta2d = theta1d.reshape([5,9])

phi1d = vals_phi
phi1d = np.array(phi1d);
phi2d = phi1d.reshape([5,9])

power1d = vals_power
power1d = np.array(power1d);
power2d = power1d.reshape([5,9])

THETA = np.deg2rad(theta2d)
PHI = np.deg2rad(phi2d)
R = power2d
Rmax = np.max(R)

X = R * np.sin(THETA) * np.cos(PHI)
Y = R * np.sin(THETA) * np.sin(PHI)
Z = R * np.cos(THETA)

fig = plt.figure()

ax = fig.add_subplot(1,1,1, projection='3d')
ax.grid(True)
ax.axis('on')
ax.set_xticks([])
ax.set_yticks([])
ax.set_zticks([])

N = R / Rmax
ax.plot_surface(

    X, Y, Z, rstride=1, cstride=1, cmap=plt.get_cmap('jet'),

    linewidth=0, antialiased=False, alpha=0.5, zorder = 0.5)

ax.set_title('Spherical 3D Plot', fontsize=20)
m = cm.ScalarMappable(cmap=cm.jet)
m.set_array(R)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')
m = cm.ScalarMappable(cmap=cm.jet)
m.set_array(R) 
fig.colorbar(m, shrink=0.8);
ax.view_init(azim=300, elev = 30)

# Add Spherical Grid
phi ,theta = np.linspace(0, 2 * np.pi, 40), np.linspace(0, np.pi, 40)
PHI, THETA  = np.meshgrid(phi,theta)
R = Rmax

X = R * np.sin(THETA) * np.cos(PHI)
Y = R * np.sin(THETA) * np.sin(PHI)
Z = R * np.cos(THETA)

ax.plot_wireframe(X, Y, Z, linewidth=0.5, rstride=3, cstride=3)

print(theta1d)
print(theta2d)
print(power2d)
plt.show()

试图得到一个近似于此的结果

4

2 回答 2

1

您可以使用以下方法添加单位长度的轴线:

ax.plot([0, 1], [0, 0], [0, 0], linewidth=2, color = 'red')
ax.plot([0, 0], [0, 1], [0, 0], linewidth=2, color = 'green')
ax.plot([0, 0], [0, 0], [0, 1], linewidth=2, color = 'blue')

关于表面的颜色,您需要定义一个表示与原点的距离的表达式,然后使用此表达式创建您的颜色图并将其传递给如下所示的facecolors参数ax.plot_surface

dist = np.sqrt(X**2 + Y**2 + Z**2)
dist_max = np.max(dist)
my_col = cm.jet(dist/dist_max)

surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, facecolors=my_col, linewidth=0, antialiased=False)

完整代码:

from matplotlib import cm
import matplotlib.pyplot as plt
import numpy as np

fig = plt.figure()
ax = fig.gca(projection='3d')
X = np.arange(-5, 5, 0.25)
Y = np.arange(-5, 5, 0.25)
X, Y = np.meshgrid(X, Y)
R = np.sqrt(X**2 + Y**2)
Z = 8*np.sin(R)
dist = np.sqrt(X**2 + Y**2 + Z**2)
dist_max = np.max(dist)
my_col = cm.jet(dist/dist_max)

axes_length = 1.5
ax.plot([0, axes_length*dist_max], [0, 0], [0, 0], linewidth=2, color = 'red')
ax.plot([0, 0], [0, axes_length*dist_max], [0, 0], linewidth=2, color = 'green')
ax.plot([0, 0], [0, 0], [0, axes_length*dist_max], linewidth=2, color = 'blue')

surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, facecolors=my_col,
        linewidth=0, antialiased=False)

ax.set_xlim([-axes_length*dist_max, axes_length*dist_max])
ax.set_ylim([-axes_length*dist_max, axes_length*dist_max])
ax.set_zlim([-axes_length*dist_max, axes_length*dist_max])

plt.show()

这给了我这个结果:

在此处输入图像描述

如您所见,表面的颜色从靠近原点的蓝色变为远离原点的红色。将此代码应用于您的数据应该不难。

于 2020-07-20T12:01:09.743 回答
1

这是建立在 Andrea 的出色答案的基础上,添加了一些对点之间可能有相当大间距的实际数据有帮助的补充。当我第一次绘制 45 度间距的东西时,它看起来像这样:

初始情节

有两个明显的问题:

  1. 面非常大,只有一种颜色,尽管它们的值范围很广。
  2. 形状关于原点对称,但面的颜色不对称。

问题 1 可以通过对数据进行线性插值来改进,以便将每个面分成多个可以具有不同颜色的部分。

问题 2 的发生是由于分配面颜色的方式。想象一下 2D 平面上的 3x3 点网格,每个点都有一个值。当您绘制曲面时,只有 2x2 个面,因此最后一行和最后一列值被丢弃,每个面的颜色仅由面的一个角决定。我们真正想要的是每个面中心的值。我们可以通过取四个角值的平均值并使用它来分配颜色来估计这一点。

在计算上,这最终类似于问题 1 的插值,所以我对两者都使用了相同的函数“interp_array”。我不是一个 Python 程序员,所以可能有一种更有效的方法来做到这一点,但它可以完成工作。

这是问题 2 固定但没有插值的图。对称性是固定的,但只使用了 2 种颜色,因为面与原点的间距相等。

对称修复

这是在点之间进行 8 倍插值的最终图。现在它更接近于您在商业天线测量软件中看到的那种连续彩色图。

添加了插值

import numpy as np
import matplotlib.pyplot as plt
import mpl_toolkits.mplot3d.axes3d as Axes3D
from matplotlib import cm, colors

def interp_array(N1):  # add interpolated rows and columns to array
    N2 = np.empty([int(N1.shape[0]), int(2*N1.shape[1] - 1)])  # insert interpolated columns
    N2[:, 0] = N1[:, 0]  # original column
    for k in range(N1.shape[1] - 1):  # loop through columns
        N2[:, 2*k+1] = np.mean(N1[:, [k, k + 1]], axis=1)  # interpolated column
        N2[:, 2*k+2] = N1[:, k+1]  # original column
    N3 = np.empty([int(2*N2.shape[0]-1), int(N2.shape[1])])  # insert interpolated columns
    N3[0] = N2[0]  # original row
    for k in range(N2.shape[0] - 1):  # loop through rows
        N3[2*k+1] = np.mean(N2[[k, k + 1]], axis=0)  # interpolated row
        N3[2*k+2] = N2[k+1]  # original row
    return N3


vals_theta = np.arange(0,181,45)
vals_phi = np.arange(0,361,45)

vals_phi, vals_theta = np.meshgrid(vals_phi, vals_theta)

THETA = np.deg2rad(vals_theta)
PHI = np.deg2rad(vals_phi)

# simulate the power data
R = abs(np.cos(PHI)*np.sin(THETA))  # 2 lobes (front and back)

interp_factor = 3  # 0 = no interpolation, 1 = 2x the points, 2 = 4x the points, 3 = 8x, etc

X = R * np.sin(THETA) * np.cos(PHI)
Y = R * np.sin(THETA) * np.sin(PHI)
Z = R * np.cos(THETA)

for counter in range(interp_factor):  # Interpolate between points to increase number of faces
    X = interp_array(X)
    Y = interp_array(Y)
    Z = interp_array(Z)

fig = plt.figure()

ax = fig.add_subplot(1,1,1, projection='3d')
ax.grid(True)
ax.axis('on')
ax.set_xticks([])
ax.set_yticks([])
ax.set_zticks([])

N = np.sqrt(X**2 + Y**2 + Z**2)
Rmax = np.max(N)
N = N/Rmax

axes_length = 1.5
ax.plot([0, axes_length*Rmax], [0, 0], [0, 0], linewidth=2, color='red')
ax.plot([0, 0], [0, axes_length*Rmax], [0, 0], linewidth=2, color='green')
ax.plot([0, 0], [0, 0], [0, axes_length*Rmax], linewidth=2, color='blue')

# Find middle points between values for face colours
N = interp_array(N)[1::2,1::2]

mycol = cm.jet(N)

surf = ax.plot_surface(X, Y, Z, rstride=1, cstride=1, facecolors=mycol, linewidth=0.5, antialiased=True, shade=False)  # , alpha=0.5, zorder = 0.5)

ax.set_xlim([-axes_length*Rmax, axes_length*Rmax])
ax.set_ylim([-axes_length*Rmax, axes_length*Rmax])
ax.set_zlim([-axes_length*Rmax, axes_length*Rmax])

m = cm.ScalarMappable(cmap=cm.jet)
m.set_array(R)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')

fig.colorbar(m, shrink=0.8)
ax.view_init(azim=300, elev=30)

plt.show()
于 2020-07-23T16:51:00.450 回答