我有一个针对大量文本的多标签分类项目。我在文本(train_v['doc_text'])上使用了 tf-Idf 矢量化器,如下所示:
tfidf_transformer = TfidfTransformer()
X_counts = count_vect.fit_transform(train_v['doc_text'])
X_tfidf = tfidf_transformer.fit_transform(X_counts)
x_train_tfidf, x_test_tfidf, y_train_tfidf, y_test_tfidf = train_test_split(X_tfidf_r, label_vs, test_size=0.33, random_state=9000)
sgd = SGDClassifier(loss='hinge', penalty='l2', random_state=42, max_iter=25, tol=None, fit_intercept=True, alpha = 0.000009 )
现在,我需要在一组特征(test_v['doc_text'])上使用相同的矢量化器来预测标签。但是,当我使用以下
X_counts_test = count_vect.fit_transform(test_v['doc_text'])
X_tfidf_test = tfidf_transformer.fit_transform(X_counts_test)
predictions_test = clf.predict(X_tfidf_test)
我收到一条错误消息
ValueError: X has 388894 features per sample; expecting 330204
关于如何处理这个问题的任何想法?
谢谢。