0

这个问题类似于几天前已经发布的问题,Collapse rows from 0 to 0

这里与上一个问题不同的新变化是,我们如何仅针对时间差异小于或等于 60 的行按 Id 折叠行。

例如,使用相同的数据集

Incident.ID..                date           product
INCFI0000029582     2014-09-25 08:39:45     foo
INCFI0000029582     2014-09-25 08:39:45     foo
INCFI0000029582     2014-09-25 08:39:48     bar 
INCFI0000029582     2014-09-25 08:40:44     foo
INCFI0000029582     2014-10-10 23:04:00     foo
INCFI0000029587     2014-09-25 08:33:32     bar
INCFI0000029587     2014-09-25 08:34:41     bar
INCFI0000029587     2014-09-25 08:35:24     bar
INCFI0000029587     2014-10-10 23:04:00     foo


df <- structure(list(Incident.ID.. = c("INCFI0000029582", "INCFI0000029582","INCFI0000029582", 
"INCFI0000029582", "INCFI0000029582", "INCFI0000029587", "INCFI0000029587", 
"INCFI0000029587", "INCFI0000029587"), date = c("2014-09-25 08:39:45","2014-09-25 08:39:45", 
"2014-09-25 08:39:48", "2014-09-25 08:40:44", "2014-10-10 23:04:00", 
"2014-09-25 08:33:32", "2014-09-25 08:34:41", "2014-09-25 08:35:24", 
"2014-10-10 23:04:00"), product = 
c("foo","foo","bar","foo","foo","bar","bar","bar","foo")), 
class = "data.frame", row.names = c(NA, 
-L))

这通过ID计算时间差

 library(dplyr)
 library(lubridate)
 df1 <- df %>%
  group_by(Incident.ID..) %>%
  arrange(ymd_hms(date)) %>%
  mutate(diff = c(0, diff(ymd_hms(date))))

这会导致这个新列差异,如下所示

Incident.ID..   date                 product    diff
INCFI0000029582 2014-09-25 08:39:45  foo        0
INCFI0000029582 2014-09-25 08:39:45  foo        0
INCFI0000029582 2014-09-25 08:39:48  bar        3
INCFI0000029582 2014-09-25 08:40:44  foo        56
INCFI0000029582 2014-10-10 23:04:00  foo        1347796
INCFI0000029587 2014-09-25 08:33:32  bar        0
INCFI0000029587 2014-09-25 08:34:41  bar        69
INCFI0000029587 2014-09-25 08:35:24  bar        43
INCFI0000029587 2014-10-10 23:04:00  foo        1348116

Incident.ID..现在只在时间差小于或等于 60的地方折叠行,即diff <= 60应该产生像这样的最终数据集

 Incident.ID..     DateMin              DateMax              product      diff_collapse
 INCFI0000029582   2014-09-25 08:39:45  2014-09-25 08:40:44  foo,bar,foo  0,0,3,56
 INCFI0000029582   2014-09-25 08:40:44  2014-10-10 23:04:00  foo          1347796
 INCFI0000029587   2014-09-25 08:33:32  2014-09-25 08:34:41  bar          0
 INCFI0000029587   2014-09-25 08:34:41  2014-09-25 08:35:24  bar,bar      69,43
 INCFI0000029587   2014-09-25 08:35:24  2014-10-10 23:04:00  foo          1348116

寻找有关如何创建此类折叠数据集的帮助。提前致谢。

4

2 回答 2

0

您需要一个满足您需求的分组列:

... %>% mutate(
  grp = ifelse(diff <= 60,
               paste0(Incident.ID.., "origin"), 
               paste0(Incident.ID.., diff)
  ))

Incident.ID..这为差异小于 60 的行创建了一个相同的(在 内)分组器,否则是唯一的。(假设diff是唯一的——如果您可能复制了大于 60 的差异,请使用row_number()而不是diff在 中paste以确保它是唯一的。)将其用作折叠代码的分组列。

于 2019-02-04T20:13:46.403 回答
0

我建议制作一个新的分组变量。我得到了这样的预期结果:

df1 <- df %>%
  group_by(Incident.ID..) %>%
  arrange(ymd_hms(date)) %>%
  mutate(diff = c(0, diff(ymd_hms(date)))) %>%
  ungroup() %>%
  arrange(Incident.ID.., date) %>%
  mutate(group = cumsum(diff > 60 | diff == 0)) %>%
  group_by(group) %>%
  summarise(DateMin = min(date), 
            DateMax = max(date), 
            diff_collapse = toString(diff),
            product = toString(product))

我基本上是在通过条件决定新组应该从哪一行开始diff > 60 | diff == 0diff > 60因为那是崩溃条件,diff == 0因为那是新事件开始的时候。你也可以写Incident.ID.. != lag(Incident.ID..)cumsum每次新组开始时,将其包裹起来都会增加计数器。

首先很重要ungroup,否则cumsum只有在组内有效。

于 2019-02-04T20:14:47.343 回答