2

刚刚在 R 中发现了 Lime 包,但仍在尝试完全理解该包。我对使用“plot_features”的可视化感到困惑

请原谅我的天真。

我的问题是,每行的案例编号是连续的吗?换句话说,案例 416 是否等同于数据中的第 416 行?如果不是,我怎么知道每个案例编号所指的行?特征权重图

重现上图的示例代码:

library(MASS)
library(lime)
data(biopsy)
biopsy$ID <- NULL
biopsy <- na.omit(biopsy)
biopsy2 = data.frame(ID = 1:nrow(biopsy), biopsy)
names(biopsy2) <- c('ID','clump thickness', 'uniformity of cell size', 
                   'uniformity of cell shape', 'marginal adhesion',
                   'single epithelial cell size', 'bare nuclei', 
                   'bland chromatin', 'normal nucleoli', 'mitoses',
                   'class')
# Now we'll fit a linear discriminant model on all but 4 cases
set.seed(4)
test_set <- sample(seq_len(nrow(biopsy2)), 4)
prediction <- biopsy2$class
biopsy2$class <- NULL
model <- lda(biopsy2[-test_set, ], prediction[-test_set])
predict(model, biopsy2[test_set, ])
explainer <- lime(biopsy2[-test_set,], model, bin_continuous = TRUE, quantile_bins = FALSE)
explanation <- explain(biopsy2[test_set, ], explainer, n_labels = 1, n_features = 4)
plot_features(explanation, ncol = 1)

编辑:在活检表中添加了一个名为 ID 的额外列

4

1 回答 1

0

正如您在 中看到的explanation,在情节中,我们从头开始逐案处理:

head(explanation[, 1:5])
      model_type case  label label_prob  model_r2
1 classification  416 benign  0.9943635 0.5432439
2 classification  416 benign  0.9943635 0.5432439
3 classification  416 benign  0.9943635 0.5432439
4 classification  416 benign  0.9943635 0.5432439
5 classification    7 benign  0.9527375 0.6586789
6 classification    7 benign  0.9527375 0.6586789

但是,由于每个案例都有多行,因此知道对应的行可能不是一个坏主意。为此,您可以使用

which(416 == explanation$case)
# [1] 1 2 3 4

以便

explanation[which(416 == explanation$case), 1:5]
#       model_type case  label label_prob model_r2
# 1 classification  416 benign  0.9949716 0.551287
# 2 classification  416 benign  0.9949716 0.551287
# 3 classification  416 benign  0.9949716 0.551287
# 4 classification  416 benign  0.9949716 0.551287
于 2019-01-30T11:23:46.173 回答