forcats
小插图指出
forcats 包的目标是提供一套有用的工具来解决与因素有关的常见问题
事实上,其中一个工具是通过另一个变量重新排序因子,这是绘制数据的一个非常常见的用例。我试图用它forcats
来实现这一点,但在多面情节的情况下。也就是说,我想通过其他变量重新排序一个因子,但只使用数据的一个子集。这是一个代表:
library(tidyverse)
ggplot2::diamonds %>%
group_by(cut, clarity) %>%
summarise(value = mean(table, na.rm = TRUE)) %>%
ggplot(aes(x = clarity, y = value, color = clarity)) +
geom_segment(aes(xend = clarity, y = min(value), yend = value),
size = 1.5, alpha = 0.5) +
geom_point(size = 3) +
facet_grid(rows = "cut", scales = "free") +
coord_flip() +
theme(legend.position = "none")
这段代码产生的情节接近我想要的:
但我希望净度轴按值排序,这样我就可以快速找出哪个净度值最高。但是每个方面都意味着不同的顺序。所以我想选择按特定方面内的值对图进行排序。
当然,在这种情况下,直接使用 是forcats
行不通的,因为它会根据所有值对因子进行重新排序,而不仅仅是特定方面的值。我们开始做吧:
# Inserting this line right before the ggplot call
mutate(clarity = forcats::fct_reorder(clarity, value)) %>%
当然,它根据整个数据对因子进行了重新排序,但是如果我想要按“理想”切割的值排序的情节怎么办?,我该怎么做forcats
呢?
我目前的解决方案如下:
ggdf <- ggplot2::diamonds %>%
group_by(cut, clarity) %>%
summarise(value = mean(table, na.rm = TRUE))
# The trick would be to create an auxiliary factor using only
# the subset of the data I want, and then use the levels
# to reorder the factor in the entire dataset.
#
# Note that I use good-old reorder, and not the forcats version
# which I could have, but better this way to emphasize that
# so far I haven't found the advantage of using forcats
reordered_factor <- reorder(ggdf$clarity[ggdf$cut == "Ideal"],
ggdf$value[ggdf$cut == "Ideal"])
ggdf$clarity <- factor(ggdf$clarity, levels = levels(reordered_factor))
ggdf %>%
ggplot(aes(x = clarity, y = value, color = clarity)) +
geom_segment(aes(xend = clarity, y = min(value), yend = value),
size = 1.5, alpha = 0.5) +
geom_point(size = 3) +
facet_grid(rows = "cut", scales = "free") +
coord_flip() +
theme(legend.position = "none")
这会产生我想要的东西。
但我想知道是否有更优雅/更聪明的方式来使用forcats
.