我正在尝试使用 pyspark 中可用的 graphframe API 找出特定顶点的相邻顶点。我该怎么做?例如,考虑以下图形边缘(尽管输入是定向的,但它应该被视为双向)。
edges = [[4,3],[4,5],[5,6],[3,6],[1,3],[1,0],[0,3])
vertices = [0,1,3,4,5,6]
g = GraphFrame(vertices,edges) //this makes the graph directional, is there a way to make it bidirectional?
Now I want to do something like-
degree(3) = 5
neighbour(3) = [4,5,6,1,0]
这是我的代码,它需要一个输入文件(edge.txt),比如
v1 v2
4 3
4 5
5 6
3 6
1 3
1 0
0 3
import sys
from pyspark import SparkContext, SparkConf
from pyspark.sql import SparkSession
conf = SparkConf().setAppName('myapp')
sc = SparkContext(conf=conf)
sc.setLogLevel("WARN")
spark = SparkSession(sc)
file_name = sys.argv[1]
log_txt = sc.textFile("/user/rikhan/"+str(file_name))
header = log_txt.first()
log_txt = log_txt.filter(lambda line : line!=header)
temp_var = log_txt.map(lambda k: k.split(" "))
hasattr(temp_var,"toDF")
log_df = temp_var.toDF(header.split(" "))
log_df.dropDuplicates(['v1','v2'])
from functools import reduce
from pyspark.sql.functions import col,lit,when
from graphframes import *
import networkx as nx
import networkx.generators.small as gs
import matplotlib.pyplot as plt
from pyspark.sql import Row
from pyspark.sql import SQLContext
from pyspark.sql import DataFrame
from pyspark.sql import Column
from pyspark.sql import GroupedData
from pyspark.sql import DataFrameNaFunctions
from pyspark.sql import DataFrameStatFunctions
from pyspark.sql import functions
from pyspark.sql import types
from pyspark.sql import Window
edges = log_df.selectExpr("v1 as src","v2 as dst")
vertices = log_df.toPandas()['v1'].unique()
vertices2 = log_df.toPandas()['v2'].unique()
ver = vertices.tolist() + vertices2.tolist()
vertex = []
for x in ver:
if x not in vertex:
vertex.append(x)
rdd1 = sc.parallelize(vertex)
row_rdd = rdd1.map(lambda x: Row(x))
ver = spark.createDataFrame(row_rdd,['id'])
g = GraphFrame(ver,edges)