我需要证明给定的语言不规则,这可以吗?
该语言 M={a^m a^l c b^(m+l)|m,l in N}
使用字母 = {a,b,c}
。
证明:
Be n in N arbitrary but firm. We choose the word w=a^(2n)cb^(2n) with w in M and |w|>=n.
Be w=xyz a arbitrary decomposition with y!=lambda and |xy|<=n.
Then we have x=a^(2i), y=a^(2j) and z= a^(2n-2i-2j)cb^(2n) for j!=0 and 2(i+j)<=2n.
Now we choose k=0. The we have xy^0z=a^(2n-2i)cb^(2n).
=> xy^0z is not in M because 2n-2i!=2n for j!=0.
=> M is no regular language.
是还是不是?如果你能告诉我我的错误,我将非常感激