我使用 tensorflow 1.12 版
这是我的代码
train_loss_results = []
train_accuracy_results = []
num_epochs = 201
for epoch in range(num_epochs):
epoch_loss_avg = tf.metrics.Mean()
epoch_accuracy = tf.metrics.Accuracy()
for x,y in train_dataset:
loss_value,grads = grad(model,x,y)
optimizer.apply_gradients(zip(grads,model.variables),global_step)
epoch_loss_avg(loss_value)
epoch_accuracy(tf.argmax(model(x), axis=1, output_type=tf.int32), y)
train_loss_results.append(epoch_loss_avg.result())
train_accuracy_results.append(epoch_accuracy.result())
if epoch % 50 == 0:
print("Epoch {:03d}: Loss: {:.3f}, Accuracy: {:.3%}".format(epoch,
epoch_loss_avg.result(),
epoch_accuracy.result()))
这就是错误
AttributeError Traceback (most recent call last)
<ipython-input-33-6c3fabbf8b76> in <module>
4
5 for epoch in range(num_epochs):
----> 6 epoch_loss_avg = tf.metrics.Mean()
7 epoch_accuracy = tf.metrics.Accuracy()
8 for x,y in train_dataset:
AttributeError: module 'tensorflow._api.v1.metrics' has no attribute 'Mean'
如何解决这个问题?