1

pandas.Interval 可用于定义一个值是否以简洁的方式落在一个区间内,例如:

In [1]: import numpy as np

In [2]: import pandas as pd

In [3]: iv = pd.Interval(0, 5.5)

In [4]: 4.37 in iv
Out[4]: True

是否可以检查包含数组的所有元素而不是单个值?结果将与以下相同:

In [5]: arr = np.array(((1,8),(-4,3.5)))

In [6]: arr
Out[6]:
array([[ 1. ,  8. ],
       [-4. ,  3.5]])

In [7]: (arr > iv.left) & (arr <= iv.right)
Out[7]:
array([[ True, False],
       [False,  True]])

但是使用更简单的语法,这对 pd.Interval 来说很酷。像下面这样不起作用的东西:

In [8]: arr in iv
---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
<ipython-input-15-a118a68ee023> in <module>()
----> 1 arr in iv

pandas/_libs/interval.pyx in pandas._libs.interval.Interval.__contains__()

ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()

4

1 回答 1

0

检查与vectorize

def youf(x,iv):
    return x in iv

vfunc = np.vectorize(youf)

iv = pd.Interval(0, 5.5)

vfunc(arr, iv)
Out[27]: 
array([[ True, False],
       [False,  True]])
于 2019-01-11T22:32:39.403 回答