2

我在 google colab 上使用 TPU 运行一个非常简单的模型时遇到问题。我把它提炼成一个非常简单的程序。我怀疑它不喜欢嵌套模型(input_2?),但我不知道如何解决这个问题:

import numpy as np
import os

import tensorflow as tf
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.models import Sequential, Model, load_model
from tensorflow.keras.layers import Activation, Dense, Multiply, Input
from tensorflow.keras import metrics

import warnings
warnings.filterwarnings("ignore")


class DataGenerator:
    def __init__(self):
        pass
    def create_train(self, dataset_info, batch_size, shape, augument=True):
        assert shape[2] == 3
        while True:
            random_indexes = np.random.choice(len(dataset_info), batch_size)
            batch_images1 = np.empty((batch_size, shape[0], shape[1], shape[2]))
            batch_labels = np.zeros((batch_size, 28))
            for i, idx in enumerate(random_indexes):
                image1= self.load_image(
                    dataset_info[idx]['path'], shape)
                batch_images1[i] = image1
                batch_labels[i][dataset_info[idx]['labels']] = 1
            yield batch_images1, batch_labels


    def load_image(self, path, shape):
        image1 = np.stack((
            np.ones((256,256)), 
            np.ones((256,256)), 
            np.ones((256,256)), 
            ), -1)
        return image1.astype(np.float)

train_datagen = DataGenerator()

train_dataset_info = []
for i in range(0, 1000):
    train_dataset_info.append({
        'path':str(i),
        'labels':np.array([5])})
train_dataset_info = np.array(train_dataset_info)

valid_dataset_info = []
for i in range(1000, 1200):
    valid_dataset_info.append({
        'path':str(i),
        'labels':np.array([6])})
valid_dataset_info = np.array(valid_dataset_info)
print(train_dataset_info.shape, valid_dataset_info.shape)

def create_model(input_shape, n_out):
    inp_mask = Input(shape=input_shape)
    pretrain_model_mask = ResNet50( input_shape = (256,256,3),
        include_top=False, 
        weights=None,    
        pooling='max')

    x = pretrain_model_mask(inp_mask)
    out = Dense(n_out, activation='sigmoid')(x)
    model = Model(inputs=inp_mask, outputs=[out])

    return model


tf.keras.backend.clear_session()

model = create_model(
    input_shape=(256,256,3), 
    n_out=28)

model.compile(
    loss='binary_crossentropy', 
    optimizer=tf.train.AdamOptimizer(learning_rate=1e-3, ),
    metrics=['acc'])

TPU_WORKER = 'grpc://' + os.environ['COLAB_TPU_ADDR']

tpu_model = tf.contrib.tpu.keras_to_tpu_model(
    model,
    strategy=tf.contrib.tpu.TPUDistributionStrategy(
        tf.contrib.cluster_resolver.TPUClusterResolver(TPU_WORKER)))

tpu_model.summary()


epochs = 4 ;batch_size = 64

# create train and valid datagens
train_generator = train_datagen.create_train(
    train_dataset_info, batch_size, (256,256,3))
validation_generator = train_datagen.create_train(
    valid_dataset_info, batch_size, (256,256,3))
# train model
history = tpu_model.fit_generator(
    train_generator,
    steps_per_epoch=1000,
    validation_data=validation_generator,
    validation_steps=20,
    epochs=epochs, 
    verbose=1)

这是运行它的输出(只需在 colab 中粘贴为单个单元格):

Epoch 1/4
INFO:tensorflow:New input shapes; (re-)compiling: mode=train (# of cores 8), [TensorSpec(shape=(8,), dtype=tf.int32, name='core_id0'), TensorSpec(shape=(8, 512, 512, 3), dtype=tf.float32, name='input_1_10'), TensorSpec(shape=(8, 28), dtype=tf.float32, name='dense_target_30')]
INFO:tensorflow:Overriding default placeholder.
INFO:tensorflow:Remapping placeholder for input_1
INFO:tensorflow:Remapping placeholder for input_2
INFO:tensorflow:Default: input_2
ERROR:tensorflow:Operation of type Placeholder (tpu_140454984405456_1/input_2) is not supported on the TPU. Execution will fail if this op is used in the graph. 
INFO:tensorflow:Started compiling
---------------------------------------------------------------------------
RuntimeError                              Traceback (most recent call last)
<ipython-input-36-112706d24f9b> in <module>()
     61     validation_steps=len(valid_df)//batch_size,
     62     epochs=4,
---> 63     verbose=1,
     64 #    use_multiprocessing=False,
     65 #    callbacks=[checkpointer]

/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in fit_generator(self, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
   2175         use_multiprocessing=use_multiprocessing,
   2176         shuffle=shuffle,
-> 2177         initial_epoch=initial_epoch)
   2178 
   2179   def evaluate_generator(self,

/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training_generator.py in fit_generator(model, generator, steps_per_epoch, epochs, verbose, callbacks, validation_data, validation_steps, class_weight, max_queue_size, workers, use_multiprocessing, shuffle, initial_epoch)
    174 
    175         outs = model.train_on_batch(
--> 176             x, y, sample_weight=sample_weight, class_weight=class_weight)
    177 
    178         if not isinstance(outs, list):

/usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training.py in train_on_batch(self, x, y, sample_weight, class_weight)
   1938 
   1939       self._make_train_function()
-> 1940       outputs = self.train_function(ins)
   1941 
   1942     if len(outputs) == 1:

/usr/local/lib/python3.6/dist-packages/tensorflow/contrib/tpu/python/tpu/keras_support.py in __call__(***failed resolving arguments***)
   1247     input_specs = infeed_instance.make_input_specs(input_tensors)
   1248     tpu_model_ops = self._tpu_model_ops_for_input_specs(input_specs,
-> 1249                                                         infeed_manager)
   1250     infeed_dict = infeed_instance.make_feed_dict(tpu_model_ops)
   1251 

/usr/local/lib/python3.6/dist-packages/tensorflow/contrib/tpu/python/tpu/keras_support.py in _tpu_model_ops_for_input_specs(self, input_specs, infeed_manager)
   1154                                                  infeed_manager)
   1155       self._compilation_cache[shape_key] = new_tpu_model_ops
-> 1156       self._test_model_compiles(new_tpu_model_ops)
   1157 
   1158     return self._compilation_cache[shape_key]

/usr/local/lib/python3.6/dist-packages/tensorflow/contrib/tpu/python/tpu/keras_support.py in _test_model_compiles(self, tpu_model_ops)
   1097     if proto.status_error_message:
   1098       raise RuntimeError('Compilation failed: {}'.format(
-> 1099           proto.status_error_message))
   1100 
   1101     end_time = time.time()

RuntimeError: Compilation failed: Compilation failure: Detected unsupported operations when trying to compile graph cluster_1_11838307395637379894[] on XLA_TPU_JIT: Placeholder (No registered 'Placeholder' OpKernel for XLA_TPU_JIT devices compatible with node {{node tpu_140454984405456_1/input_2}} = Placeholder[dtype=DT_FLOAT, shape=[?,512,512,3], _device="/device:TPU_REPLICATED_CORE"]()
    .  Registered:  device='TPU'
  device='CPU'
  device='GPU'
  device='XLA_GPU'
  device='XLA_CPU'
){{node tpu_140454984405456_1/input_2}}

出于某种原因,stackoverflow 坚持我会写一些更多的细节......没有。

4

2 回答 2

1

TPU 不支持某些操作。您可以使用 tensorboard 来检查图形的哪个部分不兼容。然后你可以将这些操作固定到 CPU 上,它应该可以工作。

在您的代码中,它似乎input_x与 TPU 不兼容。TPU 需要恒定的形状和批量大小。

于 2019-01-02T14:15:05.900 回答
0

我相信 TPU 不支持 fit_generator https://github.com/tensorflow/tensorflow/issues/30162

于 2019-12-01T10:42:03.533 回答