在上一个问题SystemT Compiler and handling Infinite Types in Haskell 中,我询问了如何将 SystemT Lambda Calculus 解析为 SystemT Combinators。我决定使用纯代数数据类型来编码 SystemT Lambda 演算和 SystemT Combinator 演算(基于评论:SystemT Compiler and processing Infinite Types in Haskell)。
SystemTCombinator.hs:
module SystemTCombinator where
data THom = Id
| Unit
| Zero
| Succ
| Compose THom THom
| Pair THom THom
| Fst
| Snd
| Curry THom
| Eval
| Iter THom THom
deriving (Show)
SystemTLambda.hs:
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE PartialTypeSignatures #-}
{-# LANGUAGE TypeSynonymInstances #-}
module SystemTLambda where
import Control.Monad.Catch
import Data.Either (fromRight)
import qualified SystemTCombinator as SystemTC
type TVar = String
data TType = One | Prod TType TType | Arrow TType TType | Nat deriving (Eq)
instance Show TType where
show ttype = case ttype of
One -> "'Unit"
Nat -> "'Nat"
Prod ttype1 ttype2 ->
"(" ++ show ttype1 ++ " * " ++ show ttype2 ++ ")"
Arrow ttype1@(Arrow _ _) ttype2 ->
"(" ++ show ttype1 ++ ") -> " ++ show ttype2
Arrow ttype1 ttype2 -> show ttype1 ++ " -> " ++ show ttype2
data TTerm = Var TVar
| Let TVar TTerm TTerm
| Lam TVar TTerm
| App TTerm TTerm
| Unit
| Pair TTerm TTerm
| Fst TTerm
| Snd TTerm
| Zero
| Succ TTerm
| Iter TTerm TTerm TVar TTerm
| Annot TTerm TType
deriving (Show)
-- a context is a list of hypotheses/judgements
type TContext = [(TVar, TType)]
-- our exceptions for SystemT
data TException = TypeCheckException String
| BindingException String
deriving (Show)
instance Exception TException
newtype Parser a = Parser { run :: TContext -> Either SomeException a }
instance Functor Parser where
fmap f xs = Parser $ \ctx ->
either Left (\v -> Right $ f v) $ run xs ctx
instance Applicative Parser where
pure a = Parser $ \ctx -> Right a
fs <*> xs = Parser $ \ctx ->
either Left (\f -> fmap f $ run xs ctx) (run fs ctx)
instance Monad Parser where
xs >>= f = Parser $ \ctx ->
either Left (\v -> run (f v) ctx) $ run xs ctx
instance MonadThrow Parser where
throwM e = Parser (const $ Left $ toException e)
instance MonadCatch Parser where
catch p f = Parser $ \ctx ->
either
(\e -> case fromException e of
Just e' -> run (f e') ctx -- this handles the exception
Nothing -> Left e) -- this propagates it upwards
Right
$ run p ctx
withHypothesis :: (TVar, TType) -> Parser a -> Parser a
withHypothesis hyp cmd = Parser $ \ctx -> run cmd (hyp : ctx)
tvarToHom :: TVar -> Parser (SystemTC.THom, TType)
tvarToHom var = Parser $ \ctx ->
case foldr transform Nothing ctx of
Just x -> Right x
Nothing -> throwM $ BindingException ("unbound variable " ++ show var)
where
transform (var', varType) homAndType =
if var == var'
then Just (SystemTC.Snd, varType)
else homAndType >>= (\(varHom, varType) -> Just (SystemTC.Compose SystemTC.Fst varHom, varType))
check :: TTerm -> TType -> Parser SystemTC.THom
-- check a lambda
check (Lam var bodyTerm) (Arrow varType bodyType) =
withHypothesis (var, varType) $
check bodyTerm bodyType >>= (\bodyHom -> return $ SystemTC.Curry bodyHom)
check (Lam _ _ ) ttype = throwM
$ TypeCheckException ("expected function type, got '" ++ show ttype ++ "'")
-- check unit
check Unit One = return SystemTC.Unit
check Unit ttype =
throwM $ TypeCheckException ("expected unit type, got '" ++ show ttype ++ "'")
-- check products
check (Pair term1 term2) (Prod ttype1 ttype2) = do
hom1 <- check term1 ttype1
hom2 <- check term2 ttype2
return $ SystemTC.Pair hom1 hom2
check (Pair _ _ ) ttype = throwM
$ TypeCheckException ("expected product type, got '" ++ show ttype ++ "'")
-- check primitive recursion
check (Iter baseTerm inductTerm tvar numTerm) ttype = do
baseHom <- check baseTerm ttype
inductHom <- withHypothesis (tvar, ttype) (check inductTerm ttype)
numHom <- check numTerm Nat
return $ SystemTC.Compose (SystemTC.Pair SystemTC.Id numHom)
(SystemTC.Iter baseHom inductHom)
-- check let bindings
check (Let var valueTerm exprTerm) exprType = do
(valueHom, valueType) <- synth valueTerm
exprHom <- withHypothesis (var, valueType) (check exprTerm exprType)
return $ SystemTC.Compose (SystemTC.Pair SystemTC.Id valueHom) exprHom
check tterm ttype = do
(thom, ttype') <- synth tterm
if ttype == ttype'
then return thom
else throwM $ TypeCheckException
( "expected type '"
++ show ttype
++ "', inferred type '"
++ show ttype'
++ "'"
)
synth :: TTerm -> Parser (SystemTC.THom, TType)
synth (Var tvar) = tvarToHom tvar
synth (Let var valueTerm exprTerm) = do
(valueHom, valueType) <- synth valueTerm
(exprHom, exprType) <- withHypothesis (var, valueType) (synth exprTerm)
return (SystemTC.Compose (SystemTC.Pair SystemTC.Id valueHom) exprHom, exprType)
synth (App functionTerm valueTerm) = do
(functionHom, functionType) <- synth functionTerm
case functionType of
Arrow headType bodyType -> do
valueHom <- check valueTerm headType
return (SystemTC.Compose (SystemTC.Pair functionHom valueHom) SystemTC.Eval, bodyType)
_ -> throwM $ TypeCheckException ("expected function, got '" ++ show functionType ++ "'")
synth (Fst pairTerm) = do
(pairHom, pairType) <- synth pairTerm
case pairType of
Prod fstType sndType -> return (SystemTC.Compose pairHom SystemTC.Fst, fstType)
_ -> throwM $ TypeCheckException ("expected product, got '" ++ show pairType ++ "'")
synth (Snd pairTerm) = do
(pairHom, pairType) <- synth pairTerm
case pairType of
Prod fstType sndType -> return (SystemTC.Compose pairHom SystemTC.Snd, sndType)
_ -> throwM $ TypeCheckException ("expected product, got '" ++ show pairType ++ "'")
synth Zero = return (SystemTC.Compose SystemTC.Unit SystemTC.Zero, Nat)
synth (Succ numTerm) = do
numHom <- check numTerm Nat
return (SystemTC.Compose numHom SystemTC.Succ, Nat)
synth (Annot term ttype) = do
hom <- check term ttype
return (hom, ttype)
synth _ = throwM $ TypeCheckException "unknown synthesis"
我使用上面的双向类型检查器解析SystemTLambda.TTerm
成SystemTCombinator.THom
.
systemTLambda :: TTerm
systemTLambda =
Let "sum"
(Annot
(Lam "x" $ Lam "y" $
Iter (Var "y") (Succ $ Var "n") "n" (Var "x"))
(Arrow Nat $ Arrow Nat Nat))
(App
(App
(Var "sum")
(Succ $ Succ Zero))
(Succ $ Succ $ Succ Zero))
systemTCombinator :: Either SomeException (SystemTC.THom, SystemTC.TType)
systemTCombinator = fromRight Unit $ run (synth result) []
组合子表达式为:
Compose (Pair Id (Curry (Curry (Compose (Pair Id (Compose Fst Snd)) (Iter Snd (Compose Snd Succ)))))) (Compose (Pair (Compose (Pair Snd (Compose (Compose (Compose Unit Zero) Succ) Succ)) Eval) (Compose (Compose (Compose (Compose Unit Zero) Succ) Succ) Succ)) Eval)
我现在遇到的问题是如何解释这个组合子表达式。我知道所有组合子表达式都应该被解释为一个函数。问题是我不知道这个函数的输入和输出类型,我希望“解释器”函数是部分的,因为如果它试图错误地解释某些东西,它应该会导致 aRuntimeException
因为组合表达式是无类型,可能有错误的组合表达式。然而,我的类型检查器应该确保一旦到达解释器,组合器就应该已经很好地输入了。
根据原始博客文章,http://semantic-domain.blogspot.com/2012/12/total-functional-programming-in-partial.html组合器具有所有功能等价物。就像是:
evaluate Id = id
evaluate Unit = const ()
evaluate Zero = \() -> Z
evaluate (Succ n) = S n
evaluate (Compose f g) = (evaluate g) . (evaluate f)
evaluate (Pair l r) = (evaluate l, evaluate r)
evaluate Fst = fst
evaluate Snd = snd
evaluate (Curry h) = curry (evaluate h)
evaluate Eval = \(f, v) -> f v
evaluate (Iter base recurse) = \(a, n) ->
case n of
Z -> evaluate base a
S n -> evaluate recurse (a, evaluate (Iter base recurse) (a, n))
但显然这行不通。似乎必须有某种方式来解释THom
树,这样我才能得到某种功能,可以以部分方式执行。