5

我正在尝试使用贝叶斯优化(Hyperopt)来获得 SVM 算法的最佳参数。但是,我发现每次运行时最佳参数都会发生变化。

下面提供了一个简单的可重现案例。你能解释一下吗?

import numpy as np 
from hyperopt import fmin, tpe, hp, STATUS_OK, Trials

from sklearn.svm import SVC
from sklearn import svm, datasets
from sklearn.metrics import accuracy_score
from sklearn.model_selection import GridSearchCV, cross_val_score
from sklearn.model_selection import StratifiedShuffleSplit

iris = datasets.load_iris()
X = iris.data[:, :2] 
y = iris.target

def hyperopt_train_test(params):
    clf = svm.SVC(**params)
    return cross_val_score(clf, X, y).mean()

space4svm = {
    'C': hp.loguniform('C', -3, 3),
    'gamma': hp.loguniform('gamma', -3, 3),
}

def f(params):
    acc = hyperopt_train_test(params)
    return {'loss': -acc, 'status': STATUS_OK}

trials = Trials()

best = fmin(f, space4svm, algo=tpe.suggest, max_evals=1000, trials=trials)

print ('best:')
print (best)

以下是一些最佳值。

最佳:{'C':0.08776548401545513,'gamma':1.447360198193232}

最佳:{'C':0.23621788050791617,'gamma':1.2467882092108042}

最佳:{'C':0.3134163250819116,'gamma':1.0984778155489887}

4

1 回答 1

7

那是因为在执行过程中fmin,在程序的每次运行期间随机从定义的搜索空间 中抽取hyperopt不同的值。'C''gamma'space4cvm

要解决此问题并产生确定性结果,您需要使用以下'rstate'参数fmin

状态

    numpy.RandomState, default numpy.random or `$HYPEROPT_FMIN_SEED`

    Each call to `algo` requires a seed value, which should be different
    on each call. This object is used to draw these seeds via `randint`.
    The default rstate is numpy.random.RandomState(int(env['HYPEROPT_FMIN_SEED']))
    if the 'HYPEROPT_FMIN_SEED' environment variable is set to a non-empty
    string, otherwise np.random is used in whatever state it is in.

所以如果没有明确设置,默认情况下它会检查环境变量'HYPEROPT_FMIN_SEED'是否设置。如果不是,那么它将每次使用一个随机数。

您可以通过以下方式使用它:

rstate = np.random.RandomState(42)   #<== Use any number here but fixed

best = fmin(f, space4svm, algo=tpe.suggest, max_evals=100, trials=trials, rstate=rstate)
于 2018-12-18T11:04:07.623 回答