这里http://www.python.org/doc/essays/graphs/是 DFS 对吗?
我尝试对“兄弟姐妹”做一些事情,但它不起作用。任何人都可以编写类似于此站点代码的 BFS。
这里http://www.python.org/doc/essays/graphs/是 DFS 对吗?
我尝试对“兄弟姐妹”做一些事情,但它不起作用。任何人都可以编写类似于此站点代码的 BFS。
Yes, it is DFS.
To write a BFS you just need to keep a "todo" queue. You probably also want to turn the function into a generator because often a BFS is deliberately ended before it generates all possible paths. Thus this function can be used to be find_path or find_all_paths.
def paths(graph, start, end):
todo = [[start, [start]]]
while 0 < len(todo):
(node, path) = todo.pop(0)
for next_node in graph[node]:
if next_node in path:
continue
elif next_node == end:
yield path + [next_node]
else:
todo.append([next_node, path + [next_node]])
And an example of how to use it:
graph = {'A': ['B', 'C'],
'B': ['C', 'D'],
'C': ['D'],
'D': ['C'],
'E': ['F'],
'F': ['C']}
for path in paths(graph, 'A', 'D'):
print path
这是一个 O(N * max(vertex degree)) 广度优先搜索实现。bfs 函数以广度优先顺序生成节点,并为每个节点生成一个可用于追踪返回起点的最短路径的生成器。路径的惰性意味着您可以遍历生成的节点以找到您感兴趣的点,而无需支付构建所有中间路径的成本。
import collections
GRAPH = {'A': ['B', 'C'],
'B': ['C', 'D'],
'C': ['D'],
'D': ['C'],
'E': ['F'],
'F': ['C']}
def build_path(node, previous_map):
while node:
yield node
node = previous_map.get(node)
def bfs(start, graph):
previous_map = {}
todo = collections.deque()
todo.append(start)
while todo:
node = todo.popleft()
yield node, build_path(node, previous)
for next_node in graph.get(node, []):
if next_node not in previous_map:
previous_map[next_node] = node
todo.append(next_node)
for node, path in bfs('A', GRAPH):
print node, list(path)
def recursive_dfs(graph, start, path=[]):
'''recursive depth first search from start'''
path=path+[start]
for node in graph[start]:
if not node in path:
path=recursive_dfs(graph, node, path)
return path
def iterative_dfs(graph, start, path=[]):
'''iterative depth first search from start'''
q=[start]
while q:
v=q.pop(0)
if v not in path:
path=path+[v]
q=graph[v]+q
return path
def iterative_bfs(graph, start, path=[]):
'''iterative breadth first search from start'''
q=[start]
while q:
v=q.pop(0)
if not v in path:
path=path+[v]
q=q+graph[v]
return path
'''
+---- A
| / \
| B--D--C
| \ | /
+---- E
'''
graph = {'A':['B','C'],'B':['D','E'],'C':['D','E'],'D':['E'],'E':['A']}
print 'recursive dfs ', recursive_dfs(graph, 'A')
print 'iterative dfs ', iterative_dfs(graph, 'A')
print 'iterative bfs ', iterative_bfs(graph, 'A')