我尝试了一个可用的 K 最短路径算法。但它给出了一个错误,我无法弄清楚它是什么。我想找到两个网络节点之间的两条最短路径。它给出了一个错误,说 int 类型不可迭代,我不知道如何解决它。
import sys
#sys.modules[__name__].__dict__.clear()
import simpy
import random
import math
#import run_parameters
from heapq import heappush, heappop
from itertools import count
import networkx as nx
import matplotlib.pyplot as plt
"""
A NetworkX based implementation of Yen's algorithm for computing K-shortest paths.
Yen's algorithm computes single-source K-shortest loopless paths for a
graph with non-negative edge cost. For more details, see:
http://networkx.github.io
http://en.m.wikipedia.org/wiki/Yen%27s_algorithm
"""
__author__ = 'Guilherme Maia <guilhermemm@gmail.com>'
__all__ = ['k_shortest_paths']
from heapq import heappush, heappop
from itertools import count
import networkx as nx
def k_shortest_paths(G, source, target, k=2, weight='weight'):
"""Returns the k-shortest paths from source to target in a weighted graph G.
Parameters
----------
G : NetworkX graph
source : node
Starting node
target : node
Ending node
`
k : integer, optional (default=1)
The number of shortest paths to find
weight: string, optional (default='weight')
Edge data key corresponding to the edge weight
Returns
-------
lengths, paths : lists
Returns a tuple with two lists.
The first list stores the length of each k-shortest path.
The second list stores each k-shortest path.
Raises
------
NetworkXNoPath
If no path exists between source and target.
Examples
--------
>>> G=nx.complete_graph(5)
>>> print(k_shortest_paths(G, 0, 4, 4))
([1, 2, 2, 2], [[0, 4], [0, 1, 4], [0, 2, 4], [0, 3, 4]])
Notes
------
Edge weight attributes must be numerical and non-negative.
Distances are calculated as sums of weighted edges traversed.
"""
if source == target:
return ([0], [[source]])
length, path = nx.single_source_dijkstra(G, source, target, weight=weight)
if target not in length:
raise nx.NetworkXNoPath("node %s not reachable from %s" % (source, target))
lengths = [length[target]]
paths = [path[target]]
c = count()
B = []
G_original = G.copy()
for i in range(1, k):
for j in range(len(paths[-1]) - 1):
spur_node = paths[-1][j]
root_path = paths[-1][:j + 1]
edges_removed = []
for c_path in paths:
if len(c_path) > j and root_path == c_path[:j + 1]:
u = c_path[j]
v = c_path[j + 1]
if G.has_edge(u, v):
edge_attr = G.edge[u][v]
G.remove_edge(u, v)
edges_removed.append((u, v, edge_attr))
for n in range(len(root_path) - 1):
node = root_path[n]
# out-edges
for u, v, edge_attr in G.edges_iter(node, data=True):
G.remove_edge(u, v)
edges_removed.append((u, v, edge_attr))
if G.is_directed():
# in-edges
for u, v, edge_attr in G.in_edges_iter(node, data=True):
G.remove_edge(u, v)
edges_removed.append((u, v, edge_attr))
spur_path_length, spur_path = nx.single_source_dijkstra(G, spur_node, target, weight=weight)
if target in spur_path and spur_path[target]:
total_path = root_path[:-1] + spur_path[target]
total_path_length = get_path_length(G_original, root_path, weight) + spur_path_length[target]
heappush(B, (total_path_length, next(c), total_path))
for e in edges_removed:
u, v, edge_attr = e
G.add_edge(u, v, edge_attr)
if B:
(l, _, p) = heappop(B)
lengths.append(l)
paths.append(p)
else:
break
return (lengths, paths)
def get_path_length(G, path, weight='weight'):
length = 0
if len(path) > 1:
for i in range(len(path) - 1):
u = path[i]
v = path[i + 1]
length += G.edge[u][v].get(weight, 1)
return length
G=nx.complete_graph(5)
print(k_shortest_paths(G, 0, 4, 4))
为什么会出现此错误?在某些情况下,它适用于 k=1,但是当我将 k 增加到 2 时,错误就来了。