1

我尝试了一个可用的 K 最短路径算法。但它给出了一个错误,我无法弄清楚它是什么。我想找到两个网络节点之间的两条最短路径。它给出了一个错误,说 int 类型不可迭代,我不知道如何解决它。

import sys
#sys.modules[__name__].__dict__.clear()
import simpy
import random
import math
#import run_parameters
from heapq import heappush, heappop
from itertools import count

import networkx as nx
import matplotlib.pyplot as plt


"""
A NetworkX based implementation of Yen's algorithm for computing K-shortest paths.
Yen's algorithm computes single-source K-shortest loopless paths for a
graph with non-negative edge cost. For more details, see:
http://networkx.github.io
http://en.m.wikipedia.org/wiki/Yen%27s_algorithm
"""
__author__ = 'Guilherme Maia <guilhermemm@gmail.com>'

__all__ = ['k_shortest_paths']

from heapq import heappush, heappop
from itertools import count

import networkx as nx

def k_shortest_paths(G, source, target, k=2, weight='weight'):
    """Returns the k-shortest paths from source to target in a weighted graph G.
    Parameters
    ----------
    G : NetworkX graph
    source : node
       Starting node
    target : node
       Ending node
`
    k : integer, optional (default=1)
        The number of shortest paths to find
    weight: string, optional (default='weight')
       Edge data key corresponding to the edge weight
    Returns
    -------
    lengths, paths : lists
       Returns a tuple with two lists.
       The first list stores the length of each k-shortest path.
       The second list stores each k-shortest path.
    Raises
    ------
    NetworkXNoPath
       If no path exists between source and target.
    Examples
    --------
    >>> G=nx.complete_graph(5)
    >>> print(k_shortest_paths(G, 0, 4, 4))
    ([1, 2, 2, 2], [[0, 4], [0, 1, 4], [0, 2, 4], [0, 3, 4]])
    Notes
    ------
    Edge weight attributes must be numerical and non-negative.
    Distances are calculated as sums of weighted edges traversed.
    """
    if source == target:
        return ([0], [[source]])

    length, path = nx.single_source_dijkstra(G, source, target, weight=weight)
    if target not in length:
        raise nx.NetworkXNoPath("node %s not reachable from %s" % (source, target))

    lengths = [length[target]]
    paths = [path[target]]
    c = count()
    B = []
    G_original = G.copy()

    for i in range(1, k):
        for j in range(len(paths[-1]) - 1):
            spur_node = paths[-1][j]
            root_path = paths[-1][:j + 1]

            edges_removed = []
            for c_path in paths:
                if len(c_path) > j and root_path == c_path[:j + 1]:
                    u = c_path[j]
                    v = c_path[j + 1]
                    if G.has_edge(u, v):
                        edge_attr = G.edge[u][v]
                        G.remove_edge(u, v)
                        edges_removed.append((u, v, edge_attr))

            for n in range(len(root_path) - 1):
                node = root_path[n]
                # out-edges
                for u, v, edge_attr in G.edges_iter(node, data=True):
                    G.remove_edge(u, v)
                    edges_removed.append((u, v, edge_attr))

                if G.is_directed():
                    # in-edges
                    for u, v, edge_attr in G.in_edges_iter(node, data=True):
                        G.remove_edge(u, v)
                        edges_removed.append((u, v, edge_attr))

            spur_path_length, spur_path = nx.single_source_dijkstra(G, spur_node, target, weight=weight)
            if target in spur_path and spur_path[target]:
                total_path = root_path[:-1] + spur_path[target]
                total_path_length = get_path_length(G_original, root_path, weight) + spur_path_length[target]
                heappush(B, (total_path_length, next(c), total_path))

            for e in edges_removed:
                u, v, edge_attr = e
                G.add_edge(u, v, edge_attr)

        if B:
            (l, _, p) = heappop(B)
            lengths.append(l)
            paths.append(p)
        else:
            break

    return (lengths, paths)

def get_path_length(G, path, weight='weight'):
    length = 0
    if len(path) > 1:
        for i in range(len(path) - 1):
            u = path[i]
            v = path[i + 1]

            length += G.edge[u][v].get(weight, 1)

    return length

G=nx.complete_graph(5)
print(k_shortest_paths(G, 0, 4, 4))

为什么会出现此错误?在某些情况下,它适用于 k=1,但是当我将 k 增加到 2 时,错误就来了。

4

0 回答 0