3

我最近一直在使用 Python 进行线性编程,并且我用 PuLP 创建了我的第一个优化算法。

我正在处理生产过程的调度问题。目标是通过为一天中的每个小时创建一个理想的生产计划来最小化每天的生产成本,并为一年中的所有日子创建此计划。

我遇到的问题是算法的执行需要很长时间(几个小时)并且经常卡住。另外,我感觉随着时间的推移它会变慢。

我希望获得有关如何提高代码性能的建议。

我解决问题的方法:

  • 定义我的最小化问题以创建一整天的最佳时间表。
  • 循环我的代码以在一年中的所有 365 天运行此优化。
  • 在每个循环结束时,我采用优化的当天生产计划并将其附加到数据框中,因此最后我有一个包含一年中所有日子的生产计划的数据框。

我正在处理 3 个生产资产(“a”、“l”和“o”),每个资产都有几种生产模式。我将每个资产模式组合定义为一个“选项”,总共有 14 个选项。每个选项每小时都可以变化,并且具有整数值(生产量)和二进制值(开/关),从而产生大约 14 x 2 x 24 = 672 个变量。该问题包含大约 1250 个约束。

我的代码有 200 多行,所以我有点犹豫要在这里分享所有代码,但我将在下面分享最重要的部分。

定义供应选项:

def set_supplyoptions():
cols = ['option', 'min_capacity', 'max_capacity']
options_list = [{'option':'o', 'min_capacity': 0, 'max_capacity':146},
                {'option':'l30', 'min_capacity': 0, 'max_capacity':30},
                {'option':'l50', 'min_capacity': 31, 'max_capacity':50},
                {'option':'l90', 'min_capacity': 51, 'max_capacity':90},
                {'option':'l150', 'min_capacity': 91, 'max_capacity':150},
                {'option':'l230', 'min_capacity': 151, 'max_capacity':230},
                {'option':'a15', 'min_capacity': 0, 'max_capacity':15},
                {'option':'a30', 'min_capacity': 0, 'max_capacity':30},
                {'option':'a45', 'min_capacity': 0, 'max_capacity':45},
                {'option':'a60_below53', 'min_capacity': 0, 'max_capacity':52},
                {'option':'a_flow_below53', 'min_capacity': 0, 'max_capacity':52},
                {'option':'a_flow_above53', 'min_capacity': 0, 'max_capacity':8},
                {'option':'l_total', 'min_capacity': 0, 'max_capacity':230},
                {'option':'a_total', 'min_capacity': 0, 'max_capacity':60}]

options = pd.DataFrame(options_list, columns=cols)  
options = options.set_index('option')

变量:

# production per supply option per hour
production = pulp.LpVariable.dicts("production",
                                     ((hour, option) for hour in hours for option in options.index),
                                     lowBound=0,
                                     cat='Integer')

# status of supply options per hour (in use or not in use)
options_status = pulp.LpVariable.dicts("options_status",
                                     ((hour, option) for hour in hours for option in options.index),
                                     cat='Binary')

# use status of A tranches on day (used or not used)
a_status_15 = pulp.LpVariable('a_stat_15', cat='Binary')
a_status_30 = pulp.LpVariable('a_stat_30', cat='Binary')
a_status_45 = pulp.LpVariable('a_stat_45', cat='Binary')
a_status_60 = pulp.LpVariable('a_stat_60', cat='Binary')

目标函数:

opt_model = pulp.LpProblem("Optimizer", pulp.LpMinimize)

opt_model += pulp.lpSum(
    #O variable
    [0.2*demand.loc[hour, 'price']*production[hour, 'o'] + 
    #O fixed
    3*demand.loc[hour, 'price'] +
    #L30
    ( 12 )*options_status[hour, 'l30']*demand.loc[hour, 'price'] + 
    #L50
    ( 2*options_status[hour, 'l50']+0.13*production[hour, 'l50'] )*demand.loc[hour, 'price'] +
    #L90
    ( 15*options_status[hour, 'l90']+0.13*production[hour, 'l90'] )*demand.loc[hour, 'price'] +
    #L150
    ( 8*options_status[hour, 'l150']+0.2*production[hour, 'l150'] )*demand.loc[hour, 'price'] +
    #L230
    ( -3*options_status[hour, 'l230']+0.3*production[hour, 'l230'] )*demand.loc[hour, 'price'] +
    #L fixed
    ( 7*(1-options_status[hour, 'ltotal'])*demand.loc[hour, 'price'] ) +
    #A base unit price
    (10*production[hour, 'a_flow_below53']+8.88*production[hour, 'a_flow_above53'])*(c/20) for hour in hours]
    #A daily fee
    + (a_status_15 * 1000 + a_status_30 * 2000 + a_status_45 * 3 + a_status_60 * 4000)*(c/20))

约束:

# Sum of production == Demand
for hour in hours:
    opt_model += production[(hour, 'o')] + production[(hour, 'l_total')] + production[(hour, 'a_total')] == int(demand.loc[hour, 'demand'])

# Production <=  Max capacity AND => Min capacity
for hour in hours:
    for option in options.index:
        opt_model += production[(hour, option)] >= options_status[(hour, option)]
        opt_model += production[(hour, option)] >= options.loc[option, 'min_capacity'] * options_status[(hour, option)]
        opt_model += production[(hour, option)] <= options.loc[option, 'max_capacity'] * options_status[(hour, option)]

# Constraints L
for hour in hours:
    opt_model += production[(hour, 'l30')] + production[(hour, 'l0')] + production[(hour, 'l90')] + production[(hour, 'l150')] + production[(hour, 'l230')] == production[(hour, 'l_total')]
    opt_model += options_status[(hour, 'l30')] + options_status[(hour, 'l50')] + options_status[(hour, 'l90')] + options_status[(hour, 'l150')] + options_status[(hour, 'l230')] <= 1

# Constraints A
M = 999
for hour in hours:
    # total flow = sum of tranches
    opt_model += production[(hour, 'a_flow_below53')] == production[(hour, 'a_15')] + production[(hour, 'ap_30')] + production[(hour, 'a_45')] + production[(hour, 'ap_60_below53')] 
    opt_model += production[(hour, 'a_total')] == production[(hour, 'a_flow_below53')] + production[(hour, 'a_flow_above53')]

    # only 1 tranche can be active at the time
    opt_model += production[(hour, 'a_15')] <= M * a_status_15
    opt_model += production[(hour, 'a_30')] <= M * a_status_30 
    opt_model += production[(hour, 'a_45')] <= M * a_status_45
    opt_model += production[(hour, 'a_60_below53')] + production[(hour, 'a_flow_above53')] <= M * a_status_60

    # a_60_above53 can only be active if a_60_below53 == 52
    opt_model += production[(hour, 'a_flow_above53')] <= M * options_status[(hour, 'a_flow_above53')]
    opt_model += (52 - production[(hour, 'a_flow_below53')] ) <= M * (1-options_status[(hour, 'a_flow_above53')])

# only 1 'mode' can be used per day (corresponding to daily fee)
opt_model += a_status_15 + a_status_30 + a_status_45 + a_status_60 <= 1
4

2 回答 2

6

除非您有大量变量,否则 LP 问题的解决速度非常快。是整数和二进制变量减慢了你的速度。

很可能是你的production变量在杀死你。我建议将这些视为线性/连续变量(“线性松弛”),以快速获得解决方案(然后可以向下/向上舍入以获得可行的解决方案)。

另一个选项可能是增加允许的最优性差距,或设置超时限制。默认的最优性差距将非常低,这意味着 MILP 的分支定界求解器将继续运行。求解器通常相对较快地获得好的解决方案,然后花费大量时间试图证明解决方案的最优性。- 您可以为求解器提供超时以获得近似解:

prob.solve(pulp.solvers.PULP_CBC_CMD(maxSeconds=120))

于 2018-11-29T18:24:50.030 回答
-5

LP 问题是 NP 难的。对于您的问题,Python 可能太慢了。您可以考虑以下一项或多项建议(按照您的其他作品的顺序)

  1. 减少约束的数量,它可以更快地生成解决方案。消除不合理的解决方案。

  2. 通过组合输入或约束来重新建模您的问题。

  3. 使用其他可能更快的软件或库。您可以考虑使用 CPLEX 或 GLPK。

于 2018-11-23T16:22:38.573 回答