1

我正在尝试通过使用 gstat 进行克里金法进行估计,但由于协方差矩阵的问题而永远无法实现。我从来没有估计过我想要的位置,因为它们都被跳过了。对于每个位置,我都有以下警告消息:

1: In predict.gstat(g, newdata = newdata, block = block, nsim = nsim,  : 
Covariance matrix singular at location [-8.07794,48.0158,0]: skipping...

所有的估计都是NA。

到目前为止,我已经浏览了许多相关的 StackOverflow 线程,但没有一个能解决我的问题(https://gis.stackexchange.com/questions/222192/r-gstat-krige-covariance-matrix-singular-at-location-5-88 -47-4-0-skipping ; https://gis.stackexchange.com/questions/200722/gstat-krige-error-covariance-matrix-singular-at-location-917300-3-6109e06-0 ; https:// /gis.stackexchange.com/questions/262993/r-gstat-predict-error?rq=1 )

我检查了:

  • 我的数据集中实际上有一个空间结构(参见下面的代码气泡图)

  • 没有重复的位置

  • 变异函数模型不是奇异的,并且非常适合实验变异函数(参见下面的代码图)

  • 我还尝试了 gstat 库中的 range、sill、nugget 和所有模型的几个值

  • 协方差矩阵是正定的并且具有正的特征值。根据 gstat 它是奇异的,但不是 is.singular.matrix 函数

  • 有足够的点对来做实验变异函数

如何克服这个问题?有什么技巧可以避免奇异协方差矩阵?我也欢迎任何克里金法的“最佳实践”。

代码(需要 forSO.Rdata:https ://www.dropbox.com/s/5vfj2gw9rkt365r/forSO.Rdata?dl=0 ):

library(ggplot2)
library(gstat)

#Attached Rdata
load("forSO.Rdata")

#The observations
str(abun)

#Spatial structure
abun %>% as.data.frame %>% 
  ggplot(aes(lon, lat)) +
  geom_point(aes(colour=prop_species_cells), alpha=3/4) + 
  coord_equal() + theme_bw()

#Number of pair of points
cvgm <- variogram(prop_species_cells ~1, data=abun, width=3,  cutoff=300)
plot(cvgm$dist,cvgm$np)

#Fit a model covariogram
efitted = fit.variogram(cvgm, vgm(model="Mat", range=100, nugget=1), fit.method=7, fit.sills=TRUE, fit.ranges=TRUE)
plot(cvgm,efitted)

#No warning, and the model is non singular
attr(efitted, "singular")

#Covariance matrix (only on a small set of points, I have more than 25000 points) : positive-definite, postiive eigen values and not singular
hex_pointsDegTiny=hex_pointsDeg
hex_pointsDegTiny@coords=hex_pointsDegTiny@coords[1:10,]
dists <- spDists(hex_pointsDegTiny)
covarianceMatrix=variogramLine(efitted, maxdist = max(cvgm$dist), n = 10*max(cvgm$dist), dir = c(1,0,0), dist_vector = dists, covariance = TRUE)
eigen(covarianceMatrix)$values
is.positive.definite(covarianceMatrix)
is.singular.matrix(covarianceMatrix)

# No duplicate locations
zerodist(hex_pointsDegTiny)

# Impossible to krig
OK_fit <- gstat(id = "OK_fit", formula = prop_species_cells ~ 1, data = abun, model = efitted)
dist <- predict(OK_fit, newdata = hex_pointsDegTiny)
dist@data
4

1 回答 1

1

abun实际上,数据集中有重复的位置zerodist(abun)(摆脱重复后,克里金法工作得很好。

于 2018-11-23T11:21:49.740 回答