我正在运行一个线性模型回归分析脚本,并且正在我的模型上运行 emmeans(ls 表示),但是我得到了整个 NA 不知道为什么......这是我运行的:
setwd("C:/Users/wkmus/Desktop/R-Stuff")
### yeild-twt
ASM_Data<-read.csv("ASM_FIELD_18_SUMM_wm.csv",header=TRUE, na.strings=".")
head(ASM_Data)
str(ASM_Data)
####"NA" values in table are labeled as "." colored orange
ASM_Data$REP <- as.factor(ASM_Data$REP)
head(ASM_Data$REP)
ASM_Data$ENTRY_NO <-as.factor(ASM_Data$ENTRY_NO)
head(ASM_Data$ENTRY_NO)
ASM_Data$RANGE<-as.factor(ASM_Data$RANGE)
head(ASM_Data$RANGE)
ASM_Data$PLOT_ID<-as.factor(ASM_Data$PLOT_ID)
head(ASM_Data$PLOT_ID)
ASM_Data$PLOT<-as.factor(ASM_Data$PLOT)
head(ASM_Data$PLOT)
ASM_Data$ROW<-as.factor(ASM_Data$ROW)
head(ASM_Data$ROW)
ASM_Data$REP <- as.numeric(as.character(ASM_Data$REP))
head(ASM_Data$REP)
ASM_Data$TWT_g.li <- as.numeric(as.character(ASM_Data$TWT_g.li))
ASM_Data$Yield_kg.ha <- as.numeric(as.character(ASM_Data$Yield_kg.ha))
ASM_Data$PhysMat_Julian <- as.numeric(as.character(ASM_Data$PhysMat_Julian))
ASM_Data$flowering <- as.numeric(as.character(ASM_Data$flowering))
ASM_Data$height <- as.numeric(as.character(ASM_Data$height))
ASM_Data$CLEAN.WT <- as.numeric(as.character(ASM_Data$CLEAN.WT))
ASM_Data$GRAV.TEST.WEIGHT <-as.numeric(as.character(ASM_Data$GRAV.TEST.WEIGHT))
str(ASM_Data)
library(lme4)
#library(lsmeans)
library(emmeans)
这是数据框:
> str(ASM_Data)
'data.frame': 270 obs. of 20 variables:
$ TRIAL_ID : Factor w/ 1 level "18ASM_OvOv": 1 1 1 1 1 1 1 1 1 1 ...
$ PLOT_ID : Factor w/ 270 levels "18ASM_OvOv_002",..: 1 2 3 4 5 6 7 8 9 10 ...
$ PLOT : Factor w/ 270 levels "2","3","4","5",..: 1 2 3 4 5 6 7 8 9 10 ...
$ ROW : Factor w/ 20 levels "1","2","3","4",..: 1 1 1 1 1 1 1 1 1 1 ...
$ RANGE : Factor w/ 15 levels "1","2","3","4",..: 2 3 4 5 6 7 8 9 10 12 ...
$ REP : num 1 1 1 1 1 1 1 1 1 1 ...
$ MP : int 1 1 1 1 1 1 1 1 1 1 ...
$ SUB.PLOT : Factor w/ 6 levels "A","B","C","D",..: 1 1 1 1 2 2 2 2 2 3 ...
$ ENTRY_NO : Factor w/ 139 levels "840","850","851",..: 116 82 87 134 77 120 34 62 48 136 ...
$ height : num 74 70 73 80 70 73 75 68 65 68 ...
$ flowering : num 133 133 134 134 133 131 133 137 134 132 ...
$ CLEAN.WT : num 1072 929 952 1149 1014 ...
$ GRAV.TEST.WEIGHT : num 349 309 332 340 325 ...
$ TWT_g.li : num 699 618 663 681 650 684 673 641 585 646 ...
$ Yield_kg.ha : num 2073 1797 1841 2222 1961 ...
$ Chaff.Color : Factor w/ 3 levels "Bronze","Mixed",..: 1 3 3 1 1 1 1 3 1 3 ...
$ CHAFF_COLOR_SCALE: int 2 1 1 2 2 2 2 1 2 1 ...
$ PhysMat : Factor w/ 3 levels "6/12/2018","6/13/2018",..: 1 1 1 1 1 1 1 1 1 1 ...
$ PhysMat_Julian : num 163 163 163 163 163 163 163 163 163 163 ...
$ PEDIGREE : Factor w/ 1 level "OVERLEY/OVERLAND": 1 1 1 1 1 1 1 1 1 1 ...
这是 ASM Data 的负责人:
head(ASM_Data)
`TRIAL_ID PLOT_ID PLOT ROW RANGE REP MP SUB.PLOT ENTRY_NO height flowering CLEAN.WT GRAV.TEST.WEIGHT TWT_g.li`
1 18ASM_OvOv 18ASM_OvOv_002 2 1 2 1 1 A 965 74 133 1071.5 349.37 699
2 18ASM_OvOv 18ASM_OvOv_003 3 1 3 1 1 A 931 70 133 928.8 309.13 618
3 18ASM_OvOv 18ASM_OvOv_004 4 1 4 1 1 A 936 73 134 951.8 331.70 663
4 18ASM_OvOv 18ASM_OvOv_005 5 1 5 1 1 A 983 80 134 1148.6 340.47 681
5 18ASM_OvOv 18ASM_OvOv_006 6 1 6 1 1 B 926 70 133 1014.0 324.95 650
6 18ASM_OvOv 18ASM_OvOv_007 7 1 7 1 1 B 969 73 131 1076.6 342.09 684
Yield_kg.ha Chaff.Color CHAFF_COLOR_SCALE PhysMat PhysMat_Julian PEDIGREE
1 2073 Bronze 2 6/12/2018 163 OVERLEY/OVERLAND
2 1797 White 1 6/12/2018 163 OVERLEY/OVERLAND
3 1841 White 1 6/12/2018 163 OVERLEY/OVERLAND
4 2222 Bronze 2 6/12/2018 163 OVERLEY/OVERLAND
5 1961 Bronze 2 6/12/2018 163 OVERLEY/OVERLAND
6 2082 Bronze 2 6/12/2018 163 OVERLEY/OVERLAND
我正在研究一个处理测试重量的线性模型。
这是我跑的:
ASM_Data$TWT_g.li <- as.numeric(as.character((ASM_Data$TWT_g.li)))
head(ASM_Data$TWT_g.li)
ASM_YIELD_1 <- lm(TWT_g.li~ENTRY_NO + REP + SUB.BLOCK, data=ASM_Data)
anova(ASM_YIELD_1)
summary(ASM_YIELD_1)
emmeans(ASM_YIELD_1, "ENTRY_NO") ###########ADJ. MEANS
我得到了方差分析的输出
anova(ASM_YIELD_1)
Analysis of Variance Table
Response: TWT_g.li
Df Sum Sq Mean Sq F value Pr(>F)
ENTRY_NO 138 217949 1579 7.0339 < 2e-16 ***
REP 1 66410 66410 295.7683 < 2e-16 ***
SUB.BLOCK 4 1917 479 2.1348 0.08035 .
Residuals 125 28067 225
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
但是对于emmeans,我得到了这样的东西:
ENTRY_NO emmean SE df asymp.LCL asymp.UCL
840 nonEst NA NA NA NA
850 nonEst NA NA NA NA
851 nonEst NA NA NA NA
852 nonEst NA NA NA NA
853 nonEst NA NA NA NA
854 nonEst NA NA NA NA
855 nonEst NA NA NA NA
857 nonEst NA NA NA NA
858 nonEst NA NA NA NA
859 nonEst NA NA NA NA
我的数据中确实有异常值,用“。”表示。在我的数据中,但这是我唯一能想到的。
当我跑with(ASM_Data, table(ENTRY_NO, REP, SUB.BLOCK))
这就是我所拥有的:
with(ASM_Data, table(ENTRY_NO,REP,SUB.BLOCK))
, , SUB.BLOCK = A
REP
ENTRY_NO 1 2
840 0 0
850 0 0
851 0 0
852 0 0
853 0 0
854 0 0
855 0 0
857 0 0
858 0 0
859 0 0
860 0 0
861 0 0
862 0 0
863 1 0
864 0 0
865 1 0
866 1 0
867 0 0
868 0 0
869 1 0
870 1 0
871 0 0
872 0 0
873 0 0
874 0 0
875 0 0
876 0 0
877 0 0
878 0 0
879 1 0
880 0 0
881 0 0
882 0 0
883 0 0
884 0 0
885 1 0
886 0 0
887 1 0
888 1 0
889 1 0
890 0 0
891 1 0
892 0 0
893 0 0
894 0 0
895 0 0
896 1 0
897 0 0
898 0 0
899 0 0
900 1 0
901 1 0
902 0 0
903 0 0
904 1 0
905 1 0
906 0 0
907 1 0
908 1 0
909 0 0
910 0 0
911 0 0
912 0 0
913 0 0
914 0 0
915 0 0
916 1 0
917 0 0
918 0 0
919 1 0
920 0 0
921 0 0
922 0 0
923 1 0
924 0 0
925 0 0
926 0 0
927 1 0
928 0 0
929 0 0
930 0 0
931 1 0
932 0 0
933 0 0
934 0 0
935 0 0
936 1 0
937 0 0
938 1 0
939 1 0
940 0 0
941 1 0
942 0 0
943 1 0
944 0 0
945 0 0
946 0 0
947 0 0
948 1 0
949 0 0
950 1 0
951 0 0
952 0 0
953 0 0
954 0 0
955 1 0
956 1 0
957 1 0
958 1 0
959 0 0
960 0 0
961 0 0
962 0 0
963 0 0
964 0 0
965 1 0
966 0 0
967 1 0
968 0 0
969 0 0
970 1 0
971 0 0
972 0 0
973 0 0
974 1 0
975 0 0
976 0 0
977 0 0
978 1 0
979 0 0
980 0 0
981 0 0
982 0 0
983 1 0
984 1 0
985 0 0
986 1 0
987 3 0
988 0 0
, , SUB.BLOCK = B
REP
ENTRY_NO 1 2
840 0 0
850 0 0
851 0 0
852 0 0
853 1 0
854 0 0
855 0 0
857 0 0
858 0 0
859 0 0
860 0 0
861 1 0
862 0 0
863 0 0
864 0 0
865 0 0
866 0 0
867 0 0
868 0 0
869 0 0
870 0 0
871 1 0
872 0 0
873 0 0
874 0 0
875 0 0
876 1 0
877 1 0
878 1 0
879 0 0
880 1 0
881 0 0
882 1 0
883 1 0
884 1 0
885 0 0
886 0 0
887 0 0
888 0 0
889 0 0
890 1 0
891 0 0
892 1 0
893 1 0
894 1 0
895 1 0
896 0 0
897 1 0
898 0 0
899 0 0
900 0 0
901 0 0
902 1 0
903 0 0
904 0 0
905 0 0
906 0 0
907 0 0
908 0 0
909 1 0
910 0 0
911 1 0
912 0 0
913 1 0
914 0 0
915 0 0
916 0 0
917 0 0
918 0 0
919 0 0
920 1 0
921 1 0
922 0 0
923 0 0
924 0 0
925 1 0
926 1 0
927 0 0
928 0 0
929 0 0
930 1 0
931 0 0
932 1 0
933 0 0
934 1 0
935 0 0
936 0 0
937 1 0
938 0 0
939 0 0
940 1 0
941 0 0
942 0 0
943 0 0
944 0 0
945 1 0
946 0 0
947 1 0
948 0 0
949 0 0
950 0 0
951 1 0
952 0 0
953 0 0
954 1 0
955 0 0
956 0 0
957 0 0
958 0 0
959 1 0
960 0 0
961 0 0
962 1 0
963 0 0
964 0 0
965 0 0
966 0 0
967 0 0
968 0 0
969 1 0
970 0 0
971 0 0
972 0 0
973 0 0
974 0 0
975 0 0
976 1 0
977 1 0
978 0 0
979 0 0
980 0 0
981 1 0
982 1 0
983 0 0
984 0 0
985 3 0
986 0 0
987 1 0
988 1 0
, , SUB.BLOCK = C
REP
ENTRY_NO 1 2
840 0 0
850 0 0
851 0 0
852 0 0
853 0 0
854 0 0
855 0 0
857 1 0
858 0 0
859 1 0
860 0 0
861 0 0
862 1 0
863 0 0
864 0 0
865 0 0
866 0 0
867 0 0
868 0 0
869 0 0
870 0 0
871 0 0
872 1 0
873 0 0
874 0 0
875 0 0
876 0 0
877 0 0
878 0 0
879 0 0
880 0 0
881 1 0
882 0 0
883 0 0
884 0 0
885 0 0
886 1 0
887 0 0
888 0 0
889 0 0
890 0 0
891 0 0
892 0 0
893 0 0
894 0 0
895 0 0
896 0 0
897 0 0
898 1 0
899 1 0
900 0 0
901 0 0
902 0 0
903 1 0
904 0 0
905 0 0
906 1 0
907 0 0
908 0 0
909 0 0
910 1 0
911 0 0
912 1 0
913 0 0
914 1 0
915 1 0
916 0 0
917 1 0
918 1 0
919 0 0
920 0 0
921 0 0
922 1 0
923 0 0
924 1 0
925 0 0
926 0 0
927 0 0
928 1 0
929 1 0
930 0 0
931 0 0
932 0 0
933 1 0
934 0 0
935 1 0
936 0 0
937 0 0
938 0 0
939 0 0
940 0 0
941 0 0
942 1 0
943 0 0
944 1 0
945 0 0
946 1 0
947 0 0
948 0 0
949 1 0
950 0 0
951 0 0
952 1 0
953 1 0
954 0 0
955 0 0
956 0 0
957 0 0
958 0 0
959 0 0
960 1 0
961 1 0
962 0 0
963 1 0
964 1 0
965 0 0
966 1 0
967 0 0
968 1 0
969 0 0
970 0 0
971 1 0
972 1 0
973 1 0
974 0 0
975 1 0
976 0 0
977 0 0
978 1 0
979 2 0
980 0 0
981 0 0
982 0 0
983 0 0
984 0 0
985 1 0
986 3 0
987 0 0
988 0 0
, , SUB.BLOCK = D
REP
ENTRY_NO 1 2
840 0 0
850 0 0
851 0 0
852 0 1
853 0 0
854 0 0
855 0 0
857 0 0
858 0 1
859 0 0
860 0 1
861 0 0
862 0 0
863 0 0
864 0 1
865 0 0
866 0 0
867 0 0
868 0 0
869 0 0
870 0 0
871 0 0
872 0 0
873 0 0
874 0 0
875 0 1
876 0 0
877 0 0
878 0 1
879 0 0
880 0 1
881 0 1
882 0 1
883 0 1
884 0 1
885 0 0
886 0 0
887 0 0
888 0 0
889 0 0
890 0 0
891 0 0
892 0 1
893 0 0
894 0 0
895 0 0
896 0 0
897 0 1
898 0 0
899 0 1
900 0 0
901 0 0
902 0 1
903 0 0
904 0 0
905 0 0
906 0 0
907 0 0
908 0 0
909 0 0
910 0 0
911 0 0
912 0 0
913 0 1
914 0 1
915 0 1
916 0 0
917 0 1
918 0 1
919 0 0
920 0 0
921 0 1
922 0 1
923 0 0
924 0 0
925 0 0
926 0 0
927 0 0
928 0 0
929 0 1
930 0 1
931 0 0
932 0 0
有人可以告诉我出了什么问题吗?
谢谢 !