0

为了训练 CNN,我以 TFrecord 格式编码了一些图像。这是我用来读取 TFrecord 文件和提取图像的功能。我在从 tfrecord 读取标签(由 10000-50000 范围内的 5 位数字组成且稀疏的字符串)并将这些字符串转换为“一个热”编码张量以训练我的分类器时遇到问题。训练是通过使用 tensorflow 的自定义 Estimator 进行的。这是我用来读取 TFRecords 文件的函数片段

def imgs_input_fn(filenames, classes, perform_shuffle=False, repeat_count=1, batch_size=1):
    def _parse_function(serialized):
        features = \
        {
            'image/encoded': tf.FixedLenFeature([], tf.string),
            'image/width': tf.FixedLenFeature([], tf.int64),
            'image/height': tf.FixedLenFeature([], tf.int64),
            'image/channels': tf.FixedLenFeature([], tf.int64),
            'image/colorspace': tf.FixedLenFeature([], tf.string),
            'image/class/label': tf.FixedLenFeature([], tf.string),
            'image/class/text_label': tf.FixedLenFeature([], tf.string),
            'image/filename': tf.FixedLenFeature([], tf.string)
        }

        # Parse the serialized data so we get a dict with our data.
        parsed_example = tf.parse_single_example(serialized=serialized,
                                                 features=features)
        # Get the image as raw bytes.
        # in image_shape I can't use parsed_example['image/channels'] 
        # read from file but need to pass 1 to the shape...
        # how to get this?
        channels = parsed_example['image/channels']
        image_shape = tf.stack([parsed_example['image/width'], 
                      parsed_example['image/height'], 1])
        image_raw = parsed_example['image/encoded']
        # Labels are string representing numbers but are sparse
        label = tf.string_to_number(parsed_example['image/class/label'], out_type=tf.int32)
        # Check how to pass the value read from the tfrecord file
        image = tf.image.decode_image(image_raw)
        image = tf.divide(tf.cast(image, tf.float32), tf.constant(255., dtype=tf.float32))
        image = tf.reshape(image, image_shape)

        num_classes = classes
        #The following operation does not give me expecte result 
        # as as labels are strings like 12345, 34234, 53453, 
        # and I have only ie 100 classes so tf.one_hot(10000, 100)
        # will give me a tensor with only 0s in it
        d = dict(zip([input_name], [image])), tf.one_hot(label, num_classes)
        return d


    dataset = tf.data.TFRecordDataset(filenames=filenames)
    # Parse the serialized data in the TFRecords files.
    # This returns TensorFlow tensors for the image and labels.
    dataset = dataset.map(_parse_function)
    if perform_shuffle:
        # Randomizes input using a window of 1024 elements (read into memory)
        dataset = dataset.shuffle(buffer_size=1024)
    dataset = dataset.repeat(repeat_count)  # Repeats dataset this # times
    dataset = dataset.batch(batch_size)  # Batch size to use
    iterator = dataset.make_one_shot_iterator()
    batch_features, batch_labels = iterator.get_next()
    return batch_features, batch_labels

那么我如何填写一个像查找表这样的结构,例如使用 tf.contrib.lookup.index_table_from_tensor,直接从 TFRecord 文件中读取信息,因为图像是为训练而读取的,而不是提前提供文件或读取所有 TFRecords预先提取标签?我想利用这样一个事实,即如果查找表的标签是“未知的”,则“index_table_from_tensor”将使用标签的哈希值来给出一致的结果。在定义 tf.estimator.TrainSpec 和 tf.estimator.EvalSpec 并使用 keras 模型后,我编写的函数是从训练循环 tf.estimator.train_and_evaluate 调用的

有没有办法做到这一点?

非常感谢。

塞巴

4

0 回答 0