我可以复制这个,打印是永远的。或者更确切地说,它是 print 隐式调用的字符串转换。我使用line_profiler__format__
来测量AffineScalarFunc
. (由__str__
调用,由 print 调用)我将数组大小从 8200 减小到 1000,以使其运行得更快一些。这是结果(为便于阅读而修剪):
Timer unit: 1e-06 s
Total time: 29.1365 s
File: /home/veith/Projects/stackoverflow/test/lib/python3.6/site-packages/uncertainties/core.py
Function: __format__ at line 1813
Line # Hits Time Per Hit % Time Line Contents
==============================================================
1813 @profile
1814 def __format__(self, format_spec):
1960
1961 # Since the '%' (percentage) format specification can change
1962 # the value to be displayed, this value must first be
1963 # calculated. Calculating the standard deviation is also an
1964 # optimization: the standard deviation is generally
1965 # calculated: it is calculated only once, here:
1966 1 2.0 2.0 0.0 nom_val = self.nominal_value
1967 1 29133097.0 29133097.0 100.0 std_dev = self.std_dev
1968
您可以看到几乎所有时间都发生在第 1967 行,计算标准差。如果再深入一点,你会发现问题是属性error_components
,问题在哪里,问题在哪里。如果您对此进行分析,您就会开始找到问题的根源。这里的大多数工作都是均匀分布的:derivatives
_linear_part.expand()
Function: expand at line 1481
Line # Hits Time Per Hit % Time Line Contents
==============================================================
1481 @profile
1482 def expand(self):
1483 """
1484 Expand the linear combination.
1485
1486 The expansion is a collections.defaultdict(float).
1487
1488 This should only be called if the linear combination is not
1489 yet expanded.
1490 """
1491
1492 # The derivatives are built progressively by expanding each
1493 # term of the linear combination until there is no linear
1494 # combination to be expanded.
1495
1496 # Final derivatives, constructed progressively:
1497 1 2.0 2.0 0.0 derivatives = collections.defaultdict(float)
1498
1499 15995999 4942237.0 0.3 9.7 while self.linear_combo: # The list of terms is emptied progressively
1500
1501 # One of the terms is expanded or, if no expansion is
1502 # needed, simply added to the existing derivatives.
1503 #
1504 # Optimization note: since Python's operations are
1505 # left-associative, a long sum of Variables can be built
1506 # such that the last term is essentially a Variable (and
1507 # not a NestedLinearCombination): popping from the
1508 # remaining terms allows this term to be quickly put in
1509 # the final result, which limits the number of terms
1510 # remaining (and whose size can temporarily grow):
1511 15995998 6235033.0 0.4 12.2 (main_factor, main_expr) = self.linear_combo.pop()
1512
1513 # print "MAINS", main_factor, main_expr
1514
1515 15995998 10572206.0 0.7 20.8 if main_expr.expanded():
1516 15992002 6822093.0 0.4 13.4 for (var, factor) in main_expr.linear_combo.items():
1517 7996001 8070250.0 1.0 15.8 derivatives[var] += main_factor*factor
1518
1519 else: # Non-expanded form
1520 23995993 8084949.0 0.3 15.9 for (factor, expr) in main_expr.linear_combo:
1521 # The main_factor is applied to expr:
1522 15995996 6208091.0 0.4 12.2 self.linear_combo.append((main_factor*factor, expr))
1523
1524 # print "DERIV", derivatives
1525
1526 1 2.0 2.0 0.0 self.linear_combo = derivatives
可以看到有很多调用expanded
,哪个调用isinstance
,哪个慢。另请注意注释,其中暗示该库实际上仅在需要时计算导数(并且知道否则它真的很慢)。这就是为什么转换成字符串需要这么长的时间,而之前没有这个时间。
在:__init__
_AffineScalarFunc
# In order to have a linear execution time for long sums, the
# _linear_part is generally left as is (otherwise, each
# successive term would expand to a linearly growing sum of
# terms: efficiently handling such terms [so, without copies]
# is not obvious, when the algorithm should work for all
# functions beyond sums).
在:std_dev
_AffineScalarFunc
#! It would be possible to not allow the user to update the
#std dev of Variable objects, in which case AffineScalarFunc
#objects could have a pre-calculated or, better, cached
#std_dev value (in fact, many intermediate AffineScalarFunc do
#not need to have their std_dev calculated: only the final
#AffineScalarFunc returned to the user does).
在:expand
_LinearCombination
# The derivatives are built progressively by expanding each
# term of the linear combination until there is no linear
# combination to be expanded.
所以总而言之,这在某种程度上是意料之中的,因为库处理这些需要大量操作来处理的非本地数字(显然)。