2

我无法理解以下代码有什么问题:

import numpy as np
import matplotlib.pyplot as plt
from scipy.odr import *

def gauss(p,x):
    return p[0]*np.exp(-(x-p[1])**2/(2*p[2]**2)+p[4]) + p[3]

# Create a model for fitting.
gg = Model(gauss)

x = np.arange(0, 350)

# Create a RealData object using our initiated data from above.
data = RealData(x, y_data, sx=0, sy=y_data_err)

# Set up ODR with the model and data.
odr = ODR(data, gg, beta0=[0.1, 1., 1.0, 1.0, 1.0])


# Run the regression.
out = odr.run()

# Use the in-built pprint method to give us results.
out.pprint()

x_fit = np.linspace(x[0], x[-1], 1000)
y_fit = gauss(out.beta, x_fit)

plt.figure()
plt.errorbar(x, xy_data xerr=0, yerr=y_data_err, linestyle='None', marker='x')
plt.plot(x_fit, y_fit)

plt.show()

这是直接从这里复制的,只更改了模型。我得到的错误是

scipy.odr.odrpack.odr_error: number of observations do not match

但据我所知beta0,有五个参数,这正是gauss工作所需的数量。如果有人能指出错误来源或我的误解,那就太好了。

4

1 回答 1

0

这是一个带有您的方程的绘图拟合器,在一个图表上比较 ODR 和 curve_fit。该示例使用 scipy 的差分进化遗传算法模块来确定求解器的初始参数估计,并且该模块实施拉丁超立方算法以确保彻底搜索需要搜索范围的参数空间。在此示例中,这些界限取自数据最大值和最小值。由于您的帖子没有包含数据,因此我在示例中使用了自己的测试数据。在此示例中,两条拟合曲线看起来非常相似,在绘制的极值处略有不同。 比较

import numpy, scipy, matplotlib
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
import scipy.odr
from scipy.optimize import differential_evolution
import warnings

xData = numpy.array([1.1, 2.2, 3.3, 4.4, 5.0, 6.6, 7.7, 0.0])
yData = numpy.array([1.1, 20.2, 30.3, 40.4, 50.0, 60.6, 70.7, 0.1])


def func(x, a, b, c, d, offset): # curve fitting function for curve_fit()
    return a*numpy.exp(-(x-b)**2/(2*c**2)+d) + offset


def func_wrapper_for_ODR(parameters, x): # parameter order for ODR
    return func(x, *parameters)


# function for genetic algorithm to minimize (sum of squared error)
def sumOfSquaredError(parameterTuple):
    warnings.filterwarnings("ignore") # do not print warnings by genetic algorithm
    val = func(xData, *parameterTuple)
    return numpy.sum((yData - val) ** 2.0)


def generate_Initial_Parameters():
    # min and max used for bounds
    maxX = max(xData)
    minX = min(xData)
    maxY = max(yData)
    minY = min(yData)

    parameterBounds = []
    parameterBounds.append([minY, maxY]) # search bounds for a
    parameterBounds.append([minX, maxX]) # search bounds for b
    parameterBounds.append([minX, maxX]) # search bounds for c
    parameterBounds.append([minY, maxY]) # search bounds for d
    parameterBounds.append([0.0, maxY]) # search bounds for Offset

    # "seed" the numpy random number generator for repeatable results
    result = differential_evolution(sumOfSquaredError, parameterBounds, seed=3)
    return result.x

geneticParameters = generate_Initial_Parameters()


##########################
# curve_fit section
##########################

fittedParameters_curvefit, pcov = curve_fit(func, xData, yData, geneticParameters)
print('Fitted parameters curve_fit:', fittedParameters_curvefit)
print()

modelPredictions_curvefit = func(xData, *fittedParameters_curvefit) 

absError_curvefit = modelPredictions_curvefit - yData

SE_curvefit = numpy.square(absError_curvefit) # squared errors
MSE_curvefit = numpy.mean(SE_curvefit) # mean squared errors
RMSE_curvefit = numpy.sqrt(MSE_curvefit) # Root Mean Squared Error, RMSE
Rsquared_curvefit = 1.0 - (numpy.var(absError_curvefit) / numpy.var(yData))

print()
print('RMSE curve_fit:', RMSE_curvefit)
print('R-squared curve_fit:', Rsquared_curvefit)

print()


##########################
# ODR section
##########################
data = scipy.odr.odrpack.Data(xData,yData)
model = scipy.odr.odrpack.Model(func_wrapper_for_ODR)
odr = scipy.odr.odrpack.ODR(data, model, beta0=geneticParameters)

# Run the regression.
odr_out = odr.run()

print('Fitted parameters ODR:', odr_out.beta)
print()

modelPredictions_odr = func(xData, *odr_out.beta) 

absError_odr = modelPredictions_odr - yData

SE_odr = numpy.square(absError_odr) # squared errors
MSE_odr = numpy.mean(SE_odr) # mean squared errors
RMSE_odr = numpy.sqrt(MSE_odr) # Root Mean Squared Error, RMSE
Rsquared_odr = 1.0 - (numpy.var(absError_odr) / numpy.var(yData))

print()
print('RMSE ODR:', RMSE_odr)
print('R-squared ODR:', Rsquared_odr)

print()


##########################################################
# graphics output section
def ModelsAndScatterPlot(graphWidth, graphHeight):
    f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
    axes = f.add_subplot(111)

    # first the raw data as a scatter plot
    axes.plot(xData, yData,  'D')

    # create data for the fitted equation plots
    xModel = numpy.linspace(min(xData), max(xData))
    yModel_curvefit = func(xModel, *fittedParameters_curvefit)
    yModel_odr = func(xModel, *odr_out.beta)

    # now the models as line plots
    axes.plot(xModel, yModel_curvefit)
    axes.plot(xModel, yModel_odr)

    axes.set_xlabel('X Data') # X axis data label
    axes.set_ylabel('Y Data') # Y axis data label

    plt.show()
    plt.close('all') # clean up after using pyplot

graphWidth = 800
graphHeight = 600
ModelsAndScatterPlot(graphWidth, graphHeight)
于 2018-11-02T21:32:40.200 回答