0

i computed tfidf vectorizer for text data and got vectors as (100000,2000) max_feature = 2000.

while i am computing the co occurance matrix by below code.

length = 2000
m = np.zeros([length,length]) # n is the count of all words
def cal_occ(sentence,m):
    for i,word in enumerate(sentence):
    print(i)
    print(word)
    for j in range(max(i-window,0),min(i+window,length)):
        print(j)
        print(sentence[j])
        m[word,sentence[j]]+=1
for sentence in tf_vec:
    cal_occ(sentence, m)

I am getting the following error.

0
(0, 1210)   0.20426932204609685
(0, 191)    0.23516811545499153
(0, 592)    0.2537746177804585
(0, 1927)   0.2896119458034052
(0, 1200)   0.1624114163299802
(0, 1856)   0.24376566018277918
(0, 1325)   0.2789314085220367
(0, 756)    0.15365704375851477
(0, 1130)   0.293489555928974
(0, 346)    0.21231046306681553
(0, 557)    0.2036759579760878
(0, 1036)   0.29666992324872365
(0, 264)    0.36435609585838674
(0, 1701)   0.242619998334931
(0, 1939)   0.33934107208095693
---------------------------------------------------------------------------
IndexError                                Traceback (most recent call last)
<ipython-input-96-ad505b6df734> in <module>()
 11             m[word,sentence[j]]+=1
 12 for sentence in tf_vec:
 ---> 13     cal_occ(sentence, m)

 <ipython-input-96-ad505b6df734> in cal_occ(sentence, m)
  9             print(j)
 10             print(sentence[j])
 ---> 11             m[word,sentence[j]]+=1
 12 for sentence in tf_vec:
 13     cal_occ(sentence, m)

IndexError: only integers, slices (:), ellipsis (...), numpy.newaxis (None) and integer or boolean arrays are valid indices

4

1 回答 1

0

您很可能在这里遇到问题:

for j in range(max(i-window,0),min(i+window,length)):

当i+window超出界限时, min函数返回长度,你可以试试这个而不是上面的行:

for j in range(max(i-window,0),min(i+window,length-1)):

希望这可以帮助,

干杯

于 2018-11-02T11:52:24.637 回答