我已经定义了这样的拓扑空间,
Require Export Ensembles.
Arguments Full_set {U}.
Arguments Empty_set {U}.
Arguments In {U}.
Arguments Intersection {U}.
Arguments Union {U}.
Arguments Complement {U}.
Definition Family A := Ensemble (Ensemble A).
Inductive FamilyUnion {T : Type} (F: Family T) : Ensemble T :=
| family_union_intro: forall (S:Ensemble T) (x:T),
In F S -> In S x -> In (FamilyUnion F) x.
Inductive FamilyIntersection {T: Type} (F: Family T) : Ensemble T :=
| family_intersect_intro : forall x, (forall (S:Ensemble T), (In F S) -> (In S x)) -> (In (FamilyIntersection F) x).
Record Topology : Type := mkTopology
{
Point: Type;
Open: Ensemble (Ensemble Point) ;
EmptyOpen: (In Open Empty_set) ;
FullOpen: (In Open Full_set) ;
IntersectionOpen: forall x y, (In Open x) -> (In Open y) -> (In Open (Intersection x y)) ;
UnionOpen: forall F: (Family Point), (forall x: (Ensemble Point), (In F x) -> (In Open x)) -> In Open (FamilyUnion F)
}.
Definition Closed (T: Topology) := forall C: (Ensemble (Point T)), In (Open T) (Complement C).
但当我试图定义时,
Theorem TopologyViaClosedSet {P: Type} (closed: Ensemble (Ensemble P))
(emptyClosed: (In closed Empty_set))
(fullClosed: (In closed Full_set))
(unionClosed: (forall x y, (In closed x) -> (In closed y) -> (In closed (Union x y))))
(intersectionClosed: (forall F:(Family P), (forall x: (Ensemble P), (In F x) -> (In closed x)) -> (In closed (FamilyIntersection F)))) :
exists t: Topology, forall x, (In (Open t) x) <-> (In closed x)
它引发统一错误。我明白为什么它不能完成,但是我是否有可能暗示 Coq,里面的点字段不知何故t是P((Point t) = P)?