您需要执行 dir(systemml.mllearn) 才能查看 mllearn 函数。
>>> dir(systemml.mllearn)
['Caffe2DML', 'Keras2DML', 'LinearRegression', 'LogisticRegression',
'NaiveBayes', 'SVM', '__all__', '__builtins__', '__doc__', '__file__',
'__name__', '__package__', '__path__', 'estimators']
请从 pypi.org 安装 SystemML 1.2。1.2 是 2018 年 8 月以来的最新版本。版本 1.0 仅提供实验性支持。
您能否尝试只导入 MLContext,看看加载主 SystemML jar 文件是否有效,以及您的安装使用什么版本?
>>> from systemml import MLContext
>>> ml = MLContext(sc)
Welcome to Apache SystemML!
Version 1.2.0
>>> print (ml.buildTime())
2018-08-17 05:58:31 UTC
>>> from sklearn import datasets, neighbors
>>> from systemml.mllearn import LogisticRegression
>>> y_digits = digits.target
>>> n_samples = len(X_digits)
>>> X_train = X_digits[:int(.9 * n_samples)]
>>> y_train = y_digits[:int(.9 * n_samples)]
>>> X_test = X_digits[int(.9 * n_samples):]
>>> y_test = y_digits[int(.9 * n_samples):]
>>>
>>> logistic = LogisticRegression(spark)
>>>
>>> print('LogisticRegression score: %f' % logistic.fit(X_train, y_train).score(X_test, y_test))
18/10/20 00:15:52 WARN BaseSystemMLEstimatorOrModel: SystemML local memory budget:5097 mb. Approximate free memory available on the driver JVM:416 mb.
18/10/20 00:15:52 WARN StatementBlock: WARNING: [line 81:0] -> maxinneriter -- Variable maxinneriter defined with different value type in if and else clause.
18/10/20 00:15:53 WARN SparkExecutionContext: Configuration parameter spark.driver.maxResultSize set to 1 GB. You can set it through Spark default configuration setting either to 0 (unlimited) or to available memory budget of size 4 GB.
BEGIN MULTINOMIAL LOGISTIC REGRESSION SCRIPT
...