我正在尝试为 24 维特征向量和 32 维特征向量实现 GMM 聚类,其中初始参数的分配由 Kmeans algorightm 完成(K 均值聚类仅提供聚类中心 - MU)。我正在关注这个链接,它仅针对 2D 特征向量和预定义的 Mu 和 sigma 实现。
如果有人有 GMM 聚类的代码,请发布。
sklearn 中也有 GMM 的预定义库,但它并没有给我每次迭代的可能性。sklearn GMM
我正在尝试为 24 维特征向量和 32 维特征向量实现 GMM 聚类,其中初始参数的分配由 Kmeans algorightm 完成(K 均值聚类仅提供聚类中心 - MU)。我正在关注这个链接,它仅针对 2D 特征向量和预定义的 Mu 和 sigma 实现。
如果有人有 GMM 聚类的代码,请发布。
sklearn 中也有 GMM 的预定义库,但它并没有给我每次迭代的可能性。sklearn GMM
def kmeans(dataSet, k, c):
# 1. Randomly choose clusters
rng = np.random.RandomState(c)
p = rng.permutation(dataSet.shape[0])[:k]
centers = dataSet[p]
while True:
labels = pairwise_distances_argmin(dataSet, centers)
new_centers = np.array([dataSet[labels == i].mean(0) for i in range(k)]
if np.all(centers == new_centers):
break
centers = new_centers
cluster_data = [dataSet[labels == i] for i in range(k)]
l = []
covs = []
for i in range(k):
l.append(len(cluster_data[i]) * 1.0 / len(dataSet))
covs.append(np.cov(np.array(cluster_data[i]).T))
return centers, l, covs, cluster_data
return new_mu, new_covs, cluster_data
class gaussian_Mix_Model:
def __init__(self, k = 8, eps = 0.0000001):
self.k = k ## number of clusters
self.eps = eps ## threshold to stop `epsilon`
def calculate_Exp_Maxim(self, X, max_iters = 1000):
# n = number of data-points, d = dimension of data points
n, d = X.shape
mu, Cov = [], []
for i in range(1,k):
new_mu, new_covs, cluster_data = kmeans(dataSet, k, c)
# Initialize new
mu[k] = new_mu
Cov[k]= new_cov
# initialize the weights
w = [1./self.k] * self.k
R = np.zeros((n, self.k))
### LLhoods
LLhoods = []
P = lambda mu, s: np.linalg.det(s) ** -.5 ** (2 * np.pi) ** (-X.shape[1]/2.) \
* np.exp(-.5 * np.einsum('ij, ij -> i',\
X - mu, np.dot(np.linalg.inv(s) , (X - mu).T).T ) )
# Iterate till max_iters iterations
while len(LLhoods) < max_iters:
# Expectation Calcultion
## membership for each of K Clusters
for k in range(self.k):
R[:, k] = w[k] * P(mu[k], Cov[k])
# Finding the log likelihood
LLhood = np.sum(np.log(np.sum(R, axis = 1)))
# Now store the log likelihood to the list.
LLhoods.append(LLhood)
# Number of data points to each clusters
R = (R.T / np.sum(R, axis = 1)).T
N_ks = np.sum(R, axis = 0)
# Maximization and calculating the new parameters.
for k in range(self.k):
# Calculate the new means
mu[k] = 1. / N_ks[k] * np.sum(R[:, k] * X.T, axis = 1).T
x_mu = np.matrix(X - mu[k])
# Calculate new cov
Cov[k] = np.array(1 / N_ks[k] * np.dot(np.multiply(x_mu.T, R[:, k]), x_mu))
# Calculate new PiK
w[k] = 1. / n * N_ks[k]
# check for convergence
if (np.abs(LLhood - LLhoods[-2]) < self.eps) and (iteration < max_iters): break
else:
Continue
from collections import namedtuple
self.params = namedtuple('params', ['mu', 'Cov', 'w', 'LLhoods', 'num_iters'])
self.params.mu = mu
self.params.Cov = Cov
self.params.w = w
self.params.LLhoods = LLhoods
self.params.num_iters = len(LLhoods)
return self.params
# Call the GMM to find the model
gmm = gaussian_Mix_Model(3, 0.000001)
params = gmm.fit_EM(X, max_iters= 150)
# Plotting of Log-Likelihood VS Iterations.
plt.plot(LLhoods[0])
plt.savefig('Dataset_2A_GMM_Class_1_K_16.png')
plt.clf()
plt.plot(LLhoods[1])
plt.savefig('Dataset_2A_GMM_Class_2_K_16.png')
plt.clf()
plt.plot(LLhoods[2])
plt.savefig('Dataset_2A_GMM_Class_3_K_16.png')
plt.clf()