所以这就是我已经拥有的:
import numpy as np
import matplotlib.pyplot as plt
def monteCarloPi(n):
np.random.seed() #seed the random number generator
y = np.random.rand(n)*2 - 1 #n random samples on (-1,1)
x = np.linspace(-1,1,n) #x axis to plot against
square = np.array([x,y]) #collecting axes as a single object
mask1 = ((x**2 + y**2) < 1) #filters
hits = np.sum(mask1) #calculating approximation
ratio = hits/n
pi_approx = ratio * 4
return pi_approx
这是我想做的事情:
x = np.arange(100,1000)
y = monteCarloPi(x)
plt.scatter(x,y)
但是,当我运行上述代码块时,出现以下错误:
---------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-52-bf4dcedaa309> in <module>()
1 x = np.arange(100,1000)
----> 2 y = monteCarloPi(x)
3 plt.scatter(x,y)
<ipython-input-51-8d5b36e22d4b> in monteCarloPi(n)
1 def monteCarloPi(n):
2 np.random.seed() #seed the random number generator
----> 3 y = np.random.rand(n)*2 - 1 #n random samples on (-1,1)
4 x = np.linspace(-1,1,n) #x axis to plot against
5
mtrand.pyx in mtrand.RandomState.rand()
mtrand.pyx in mtrand.RandomState.random_sample()
mtrand.pyx in mtrand.cont0_array()
TypeError: only integer scalar arrays can be converted to a scalar index
根据我对广播如何工作的理解numpy
,这应该有效。我可以只使用一个for
循环,但随着样本数量的增加,它会变得非常慢。
停止