我有一个函数,它给出了一个 memoryview 向量,我想计算该向量的范数。到目前为止,我通过将 memoryview 转换为 Numpy 数组并通过np.sqrt(V.dot(V))
. 现在,出于速度原因,我想摆脱该步骤,但该程序在某些时候会因以下实现而失败。
cdef do_something(np.double_t[::1] M_mem):
cdef:
int i
np.double_t norm_mv = 0
np.double_t norm_np = 0
np.ndarray[np.double_t, ndim=1] V = np.copy(np.asarray(M_mem))
# Original implementation -- working
norm_np = np.sqrt(V.dot(V))
# My failed try with memoryview -- not working
for i in range(M_mem.shape[0]):
norm_mv += M_mem[i]**2
norm_mv = np.sqrt(norm_mv)
# norm_mv != norm_np
我怀疑这是因为浮点运算妨碍了足够大的向量。是否有一种数值稳定的方法来计算 Cython 内存视图的范数?
更新
检查后发现舍入误差可能没有意义。相反,发生了一件非常奇怪的事情。我的实际功能如下所示:
@cython.boundscheck(False)
@cython.cdivision(True)
@cython.wraparound(False)
cdef np.double_t[:,::1] GS_coefficients(np.double_t[:,::1] M_mem):
cdef:
int n, i, k
int N_E = M_mem.shape[1]
np.ndarray[np.double_t, ndim=2] W = np.asarray(M_mem)
np.ndarray[np.double_t, ndim=2] V = np.copy(W)
np.double_t[:,::1] G = np.eye(N_E, dtype=np.float64)
np.longdouble_t norm = 0 # np.sqrt(V[:,0].dot(V[:,0]))
for i in range(M_mem.shape[0]):
norm += M_mem[i,0]**2
norm = sqrt(norm)
print("npx: ", np.sqrt(V[:,0].dot(V[:,0]))) # line 1
print("cp: ", norm) # line 2
V[:,0] /= norm
G[0,0] /= norm
for n in range(1, N_E):
for i in range(0, n):
G[n,i] = - (V[:,i].dot(W[:,n]))
V[:,n] += G[n,i] * V[:,i]
norm = np.sqrt(V[:,n].dot(V[:,n]))
V[:,n] /= norm
for i in range(n+1):
G[n,i] /= norm
return G
我插入了print
语句来检查结果“有多相等” norm
。奇怪的是,现在一切正常,就像上面的代码一样。但是,当我注释掉第一个打印语句(第 1 行)时,代码运行良好,但在程序中不久就失败了。那里发生了什么?这不只是一个print
不应该影响其他任何操作的声明吗?
更新 2
这是我尝试一个最小的、完整的和可验证的例子:
DEF N_E_cpt = 4
cimport cython
cimport numpy as np
import numpy as np
from libc.math cimport sqrt
@cython.boundscheck(False)
@cython.cdivision(True)
@cython.wraparound(False)
cdef np.double_t[:,::1] GS_coefficients(np.double_t[:,::1] M_mem):
"""Writes the coefficients, that the Gram-Schmidt procedure
provides in a Matrix and retruns it."""
cdef:
int n, i, k
int N_E = M_mem.shape[1]
np.ndarray[np.double_t, ndim=2] W = np.asarray(M_mem)
np.ndarray[np.double_t, ndim=2] V = np.copy(W)
np.double_t[:,::1] G = np.eye(N_E, dtype=np.float64)
np.longdouble_t norm = 0 # np.sqrt(V[:,0].dot(V[:,0]))
for i in range(M_mem.shape[0]):
norm += M_mem[i,0]**2
norm = sqrt(norm)
print("npx: ", np.sqrt(V[:,0].dot(V[:,0]))) # line 1
print("cp: ", norm) # line 2
V[:,0] /= norm
G[0,0] /= norm
for n in range(1, N_E):
for i in range(0, n):
G[n,i] = - (V[:,i].dot(W[:,n]))
V[:,n] += G[n,i] * V[:,i]
norm = np.sqrt(V[:,n].dot(V[:,n]))
V[:,n] /= norm
for i in range(n+1):
G[n,i] /= norm
return G
@cython.boundscheck(False)
@cython.cdivision(True)
@cython.wraparound(False)
cdef np.double_t[:,::1] G_mat(np.double_t[:,::1] M_mem):
"""Calls GS_coefficients and uses the coefficients to calculate
the entries of the transformation matrix G_ij"""
cdef:
np.double_t[:,::1] G_mem = GS_coefficients(M_mem)
int N_E = G_mem.shape[1]
np.double_t carr[N_E_cpt][N_E_cpt]
np.double_t[:,::1] G = carr
int n, i, j
# delete lower triangle in G
G[...] = G_mem
for i in range(N_E_cpt):
for j in range(0, i):
G[i,j] = 0.
for n in range(1, N_E):
for i in range(0, n):
for j in range(0, i+1):
G[n,j] += G_mem[n,i] * G[i,j]
return G
def run_test():
cdef:
np.double_t[:,::1] A_mem
np.double_t[:,::1] G
np.ndarray[np.double_t, ndim=2] A = np.random.rand(400**2, N)
int N = 4
A_mem = A
G = G_mat(A_mem)
X = np.zeros((400**2, N))
for i in range(0, N):
for j in range(0,i+1):
X[:,i] += G[i,j] * A[:,j]
print(X)
print("\n", X.T.dot(X))
run_test()
我认为没有必要了解该代码的作用。对我来说,真正的奥秘就是为什么这种print
说法会有所作为。
因此,这段代码应该采取的是将一组非正交向量写成矩阵 A 中的列向量,并返回一个正交化矩阵,该矩阵对向量集进行正交归一化,如下所示:
所以 A_{orthonormal} 等价于代码中的 X 矩阵。当您将正交矩阵的转置与正交矩阵本身相乘时,您会得到单位矩阵,只要print
语句 # line1 在那里,您就会得到统一矩阵。一旦你删除它,你也会得到非对角线条目,这意味着矩阵甚至不是正交的。为什么?