我开发了一个迁移学习应用程序,我正在为我的数据流重新训练 MobileNetV2。
我正在使用来自 tensorflow-hub 的retrain.py重新训练模型,并且没有进行任何修改。
当我从终端运行脚本时,我会在模型下载到我的用户配置文件中的临时目录后直接收到此警告。
Importing a graph with a lower producer version 26 into an existing graph with producer
version 27. Shape inference will have run different parts of the graph with different
producer versions.
在调试过程中,我创建了一个test.py
脚本来找出警告的来源:
import tensorflow as tf
import tensorflow_hub as hub
def create_module_graph(module_spec):
"""Creates a graph and loads Hub Module into it.
Args:
module_spec: the hub.ModuleSpec for the image module being used.
Returns:
graph: the tf.Graph that was created.
bottleneck_tensor: the bottleneck values output by the module.
resized_input_tensor: the input images, resized as expected by the module.
wants_quantization: a boolean, whether the module has been instrumented
with fake quantization ops.
"""
FAKE_QUANT_OPS = ('FakeQuantWithMinMaxVars',
'FakeQuantWithMinMaxVarsPerChannel')
height, width = hub.get_expected_image_size(module_spec)
with tf.Graph().as_default() as graph:
resized_input_tensor = tf.placeholder(tf.float32, [None, height, width, 3])
m = hub.Module(module_spec)
bottleneck_tensor = m(resized_input_tensor)
wants_quantization = any(node.op in FAKE_QUANT_OPS
for node in graph.as_graph_def().node)
return graph, bottleneck_tensor, resized_input_tensor, wants_quantization
def main():
module_spec = hub.load_module_spec('https://tfhub.dev/google/imagenet/mobilenet_v2_100_96/classification/2')
graph, bottleneck_tensor, resized_input_tensor, wants_quantization = create_module_graph(module_spec)
if __name__ =='__main__':
main()
并发现它起源create_module_graph
于retrain.py
. 当我使用从终端运行脚本时python test.py
,我从上面收到生产者警告。但是,当我main()
从 ipython 控制台运行时,我没有收到生产者版本警告。
当我所做的只是从 tensorflow-hub 存储库创建图表时,我不确定为什么会发生这种情况。我查看了版本兼容性文档,并没有看到任何与该错误特别相关的内容。翻看源代码,似乎表明我的图表在构建它之前已经缩减到最低版本。
- 这有什么好担心的吗?
- 它是否会改变您加载图表以进行预测的方式?