2

我有一个包含多列的购买数据框,包括以下三列:

 PURCHASE_ID (index of purchase)
 WORKER_ID (index of worker)
 ACCOUNT_ID (index of account)

一个工作人员可以有多个与之关联的帐户,一个帐户可以有多个工作人员。

如果我创建 WORKER 和 ACCOUNT 实体并添加关系,则会出现错误:

KeyError: 'Variable: ACCOUNT_ID not found in entity'

到目前为止,这是我的代码:

import pandas as pd
import featuretools as ft
import featuretools.variable_types as vtypes

d = {'PURCHASE_ID': [1, 2], 
     'WORKER_ID': [0, 0], 
     'ACCOUNT_ID': [1, 2], 
     'COST': [5, 10], 
     'PURCHASE_TIME': ['2018-01-01 01:00:00', '2016-01-01 02:00:00']}
df = pd.DataFrame(data=d)

data_variable_types = {'PURCHASE_ID': vtypes.Id,
                       'WORKER_ID': vtypes.Id,
                       'ACCOUNT_ID': vtypes.Id,
                       'COST': vtypes.Numeric,
                       'PURCHASE_TIME': vtypes.Datetime}

es = ft.EntitySet('Purchase')
es = es.entity_from_dataframe(entity_id='purchases',
                               dataframe=df,
                               index='PURCHASE_ID',
                               time_index='PURCHASE_TIME',
                               variable_types=data_variable_types)

es.normalize_entity(base_entity_id='purchases',
                   new_entity_id='workers',
                   index='WORKER_ID',
                   additional_variables=['ACCOUNT_ID'],
                   make_time_index=False)

es.normalize_entity(base_entity_id='purchases',
                   new_entity_id='accounts',
                   index='ACCOUNT_ID',
                   additional_variables=['WORKER_ID'],
                   make_time_index=False)

fm, features = ft.dfs(entityset=es,
                     target_entity='purchases',
                     agg_primitives=['mean'],
                     trans_primitives=[],
                     verbose=True)
features

如何分离实体以包含多对多关系?

4

1 回答 1

3

您的方法是正确的,但是您不需要使用additional_variablesvariables 参数。如果您省略它,您的代码将毫无问题地运行。

additional_variablesto的目的EntitySet.normalize_entity是在您正在创建的新父实体中包含您想要的其他变量。例如,假设您有关于雇用日期、薪水、地点等的变量。您可以将这些变量作为附加变量,因为它们对于工人而言是静态的。在这种情况下,我认为您没有任何这样的变量。

这是我看到的代码和输出

import pandas as pd
import featuretools as ft
import featuretools.variable_types as vtypes

d = {'PURCHASE_ID': [1, 2], 
     'WORKER_ID': [0, 0], 
     'ACCOUNT_ID': [1, 2], 
     'COST': [5, 10], 
     'PURCHASE_TIME': ['2018-01-01 01:00:00', '2016-01-01 02:00:00']}
df = pd.DataFrame(data=d)

data_variable_types = {'PURCHASE_ID': vtypes.Id,
                       'WORKER_ID': vtypes.Id,
                       'ACCOUNT_ID': vtypes.Id,
                       'COST': vtypes.Numeric,
                       'PURCHASE_TIME': vtypes.Datetime}

es = ft.EntitySet('Purchase')
es = es.entity_from_dataframe(entity_id='purchases',
                               dataframe=df,
                               index='PURCHASE_ID',
                               time_index='PURCHASE_TIME',
                               variable_types=data_variable_types)

es.normalize_entity(base_entity_id='purchases',
                   new_entity_id='workers',
                   index='WORKER_ID',
                   make_time_index=False)

es.normalize_entity(base_entity_id='purchases',
                   new_entity_id='accounts',
                   index='ACCOUNT_ID',
                   make_time_index=False)

fm, features = ft.dfs(entityset=es,
                     target_entity='purchases',
                     agg_primitives=['mean'],
                     trans_primitives=[],
                     verbose=True)
features

这输出

[<Feature: WORKER_ID>,
 <Feature: ACCOUNT_ID>,
 <Feature: COST>,
 <Feature: workers.MEAN(purchases.COST)>,
 <Feature: accounts.MEAN(purchases.COST)>]

如果我们改变目标实体并增加深度

fm, features = ft.dfs(entityset=es,
                     target_entity='workers',
                     agg_primitives=['mean', 'count'],
                     max_depth=3,
                     trans_primitives=[],
                     verbose=True)
features

输出现在是工人实体的特征

[<Feature: COUNT(purchases)>,
 <Feature: MEAN(purchases.COST)>,
 <Feature: MEAN(purchases.accounts.MEAN(purchases.COST))>,
 <Feature: MEAN(purchases.accounts.COUNT(purchases))>]

让我们解释一下名为MEAN(purchases.accounts.COUNT(purchases))>

  1. 对于给定的工人,找到与该工人相关的每个购买。
  2. 对于这些购买中的每一个,计算参与该特定购买的帐户的购买总数。
  3. 在所有给定工人的购买中平均该计数。

换句话说,“与该工人进行的购买相关的帐户的平均购买次数是多少”。

于 2018-10-04T13:52:28.240 回答