我有一堆键,每个键都有一个似然变量。我想随机选择其中一个键,但我希望不太可能(键、值)被选择而不是不太可能(更可能)的对象。我想知道您是否有任何建议,最好是我可以使用的现有 python 模块,否则我需要自己制作。
我已经检查了随机模块;它似乎没有提供这个。
我必须为 1000 组不同的对象做出数百万次这样的选择,每组包含 2,455 个对象。每个集合将相互交换对象,因此随机选择器需要是动态的。1000组2433个对象,即24.33亿个对象;低内存消耗至关重要。由于这些选择不是算法的主体,我需要这个过程非常快;CPU时间是有限的。
谢谢
更新:
好的,我试图明智地考虑您的建议,但时间是如此有限......
我查看了二叉搜索树方法,它似乎太冒险(复杂而复杂)。其他建议都类似于 ActiveState 配方。我拿了它并对其进行了一些修改,以期提高效率:
def windex(dict, sum, max):
'''an attempt to make a random.choose() function that makes
weighted choices accepts a dictionary with the item_key and
certainty_value as a pair like:
>>> x = [('one', 20), ('two', 2), ('three', 50)], the
maximum certainty value (max) and the sum of all certainties.'''
n = random.uniform(0, 1)
sum = max*len(list)-sum
for key, certainty in dict.iteritems():
weight = float(max-certainty)/sum
if n < weight:
break
n = n - weight
return key
我希望通过动态保持确定性和最大确定性的总和来提高效率。欢迎任何进一步的建议。你们为我节省了很多时间和精力,同时提高了我的效率,这太疯狂了。谢谢!谢谢!谢谢!
更新2:
我决定让它一次选择更多的选择来提高它的效率。这将在我的算法中导致可接受的精度损失,因为它本质上是动态的。无论如何,这就是我现在所拥有的:
def weightedChoices(dict, sum, max, choices=10):
'''an attempt to make a random.choose() function that makes
weighted choices accepts a dictionary with the item_key and
certainty_value as a pair like:
>>> x = [('one', 20), ('two', 2), ('three', 50)], the
maximum certainty value (max) and the sum of all certainties.'''
list = [random.uniform(0, 1) for i in range(choices)]
(n, list) = relavate(list.sort())
keys = []
sum = max*len(list)-sum
for key, certainty in dict.iteritems():
weight = float(max-certainty)/sum
if n < weight:
keys.append(key)
if list: (n, list) = relavate(list)
else: break
n = n - weight
return keys
def relavate(list):
min = list[0]
new = [l - min for l in list[1:]]
return (min, new)
我还没试过。如果您有任何意见/建议,请不要犹豫。谢谢!
更新3:
我整天都在研究 Rex Logan 答案的任务定制版本。它实际上是一个特殊的字典类,而不是 2 个对象和权重数组;这使得事情变得相当复杂,因为 Rex 的代码会生成一个随机索引......我还编写了一个测试用例,它类似于我的算法中会发生的事情(但在我尝试之前我真的不知道!)。基本原则是:一个密钥被随机生成的次数越多,它再次生成的可能性就越小:
import random, time
import psyco
psyco.full()
class ProbDict():
"""
Modified version of Rex Logans RandomObject class. The more a key is randomly
chosen, the more unlikely it will further be randomly chosen.
"""
def __init__(self,keys_weights_values={}):
self._kw=keys_weights_values
self._keys=self._kw.keys()
self._len=len(self._keys)
self._findSeniors()
self._effort = 0.15
self._fails = 0
def __iter__(self):
return self.next()
def __getitem__(self, key):
return self._kw[key]
def __setitem__(self, key, value):
self.append(key, value)
def __len__(self):
return self._len
def next(self):
key=self._key()
while key:
yield key
key = self._key()
def __contains__(self, key):
return key in self._kw
def items(self):
return self._kw.items()
def pop(self, key):
try:
(w, value) = self._kw.pop(key)
self._len -=1
if w == self._seniorW:
self._seniors -= 1
if not self._seniors:
#costly but unlikely:
self._findSeniors()
return [w, value]
except KeyError:
return None
def popitem(self):
return self.pop(self._key())
def values(self):
values = []
for key in self._keys:
try:
values.append(self._kw[key][1])
except KeyError:
pass
return values
def weights(self):
weights = []
for key in self._keys:
try:
weights.append(self._kw[key][0])
except KeyError:
pass
return weights
def keys(self, imperfect=False):
if imperfect: return self._keys
return self._kw.keys()
def append(self, key, value=None):
if key not in self._kw:
self._len +=1
self._kw[key] = [0, value]
self._keys.append(key)
else:
self._kw[key][1]=value
def _key(self):
for i in range(int(self._effort*self._len)):
ri=random.randint(0,self._len-1) #choose a random object
rx=random.uniform(0,self._seniorW)
rkey = self._keys[ri]
try:
w = self._kw[rkey][0]
if rx >= w: # test to see if that is the value we want
w += 1
self._warnSeniors(w)
self._kw[rkey][0] = w
return rkey
except KeyError:
self._keys.pop(ri)
# if you do not find one after 100 tries then just get a random one
self._fails += 1 #for confirming effectiveness only
for key in self._keys:
if key in self._kw:
w = self._kw[key][0] + 1
self._warnSeniors(w)
self._kw[key][0] = w
return key
return None
def _findSeniors(self):
'''this function finds the seniors, counts them and assess their age. It
is costly but unlikely.'''
seniorW = 0
seniors = 0
for w in self._kw.itervalues():
if w >= seniorW:
if w == seniorW:
seniors += 1
else:
seniorsW = w
seniors = 1
self._seniors = seniors
self._seniorW = seniorW
def _warnSeniors(self, w):
#a weight can only be incremented...good
if w >= self._seniorW:
if w == self._seniorW:
self._seniors+=1
else:
self._seniors = 1
self._seniorW = w
def test():
#test code
iterations = 200000
size = 2500
nextkey = size
pd = ProbDict(dict([(i,[0,i]) for i in xrange(size)]))
start = time.clock()
for i in xrange(iterations):
key=pd._key()
w=pd[key][0]
if random.randint(0,1+pd._seniorW-w):
#the heavier the object, the more unlikely it will be removed
pd.pop(key)
probAppend = float(500+(size-len(pd)))/1000
if random.uniform(0,1) < probAppend:
nextkey+=1
pd.append(nextkey)
print (time.clock()-start)*1000/iterations, "msecs / iteration with", pd._fails, "failures /", iterations, "iterations"
weights = pd.weights()
weights.sort()
print "avg weight:", float(sum(weights))/pd._len, max(weights), pd._seniorW, pd._seniors, len(pd), len(weights)
print weights
test()
仍然欢迎任何意见。@Darius:你的二叉树对我来说太复杂太复杂了;而且我不认为它的叶子可以有效地去除......谢谢所有