2

我有两个数据框——对于df我想要查找匹配项epoch_minute - lag并获取相应average_hc值的每一行。

>>> df.head()
   epoch_minute  headcount
0      25640940          8
1      25640939          7
2      25640938          6
3      25640937         10
4      25640936         11
>>> avgs.head()
    epoch_minute  average_hc
0      25640940         7.8
1      25640939         8.5
2      25640938         9.2
3      25640937        10.0
4      25640936        10.1

这个 for 循环可以解决问题:

lag = []
for i,r in df.iterrows():
    l = avgs.loc[avgs['epoch_minute'] == (r['epoch_minute'] - day), 'average_hc'] 
    lag.append(l) if not l.empty else np.nan       
avgs['lag'] = pd.Series(lag).astype('float')

它产生这个正确的系列lag

  epoch_minute  average_hc   lag  headcount
0      25640940         7.8  30.2        8.0
1      25640939         8.5  28.1        7.0
2      25640938         9.2  26.2        6.0
3      25640937        10.0  24.7       10.0
4      25640936        10.1  23.1       11.0

当我尝试与操作相同的逻辑apply时:

lag1 = df.apply(lambda r: avgs.loc[avgs['epoch_minute'] == (r['epoch_minute'] - day),
         'average_hc'], axis=1)
print(f"lag1.shape: {lag1.shape}\nlag1.head():\n{lag1.head()}")

它产生了这个值正确但形状不正确的数据框,而不是我期望的系列:

        1285  1286       1287       1288  1289  1290  1291  1292  1293  1294  ...   2655  2656  2657  2658  2659  2660  2661  2662  2663  2664
0  30.200001   NaN        NaN        NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
1        NaN  28.1        NaN        NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
2        NaN   NaN  26.299999        NaN   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
3        NaN   NaN        NaN  24.799999   NaN   NaN   NaN   NaN   NaN   NaN  ...    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN
4        NaN   NaN        NaN        NaN  23.1   NaN   NaN   NaN   NaN   NaN  ...    NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN   NaN

如何删除 nans 或展平由返回的数据帧,apply使其成为一系列对角线值?

4

1 回答 1

2

如果没有匹配的值并返回空值,则使用nextwithiter返回默认值:NaNSeries

ag1 = df.apply(lambda r: next(iter(avgs.loc[avgs['epoch_minute'] == (r['epoch_minute'] - day),
         'average_hc']), np.nan), axis=1)

验证

day = 1
lag = []
for i,r in df.iterrows():
    l = avgs.loc[avgs['epoch_minute'] == (r['epoch_minute'] - day), 'average_hc'] 
    lag.append(l) if not l.empty else np.nan       
avgs['lag'] = pd.Series(lag).astype('float')

avgs['lag1'] = df.apply(lambda r: next(iter(avgs.loc[avgs['epoch_minute'] == 
                                          (r['epoch_minute'] - day), 'average_hc']), np.nan),
                                       axis=1)
print (avgs)
   epoch_minute  average_hc   lag  lag1
0      25640940         7.8   8.5   8.5
1      25640939         8.5   9.2   9.2
2      25640938         9.2  10.0  10.0
3      25640937        10.0  10.1  10.1
4      25640936        10.1   NaN   NaN

另一个使用merge左连接的解决方案,最后一个移位滞后列shift

df1 = df[['epoch_minute']]
avgs1 = avgs.rename(columns={'average_hc':'lag1'})
df2 = avgs1.merge(df1, how='left', on='epoch_minute')
df2['lag1'] = df2['lag1'].shift(-day)
于 2018-10-02T05:54:55.690 回答