我正在研究Lloyd 迭代,一种在空间中分布点的迭代算法。在每次迭代中,Lloyd 算法构建一个 Voronoi 映射,每个输入点位于其自己的 Voronoi 单元中,然后将每个点置于其 Voronoi 单元中。
不过,我在 Scipy 的 Voronoi 实现中看到了一些奇怪的行为:似乎某些点在某些迭代中无处不在。下图捕捉到了这种行为。如果您仔细观察,您会看到两个新点和单元格出现在地图的中心,经过几次迭代:
这是用于生成 Voronoi 分布的代码:
from scipy.spatial import Voronoi, voronoi_plot_2d
import matplotlib.pyplot as plt
import numpy as np
import umap, os
def find_centroid(verts):
'''Return the centroid of a polygon described by `verts`'''
area = 0
x = 0
y = 0
for i in range(len(verts)-1):
step = (verts[i, 0] * verts[i+1, 1]) - (verts[i+1, 0] * verts[i, 1])
area += step
x += (verts[i, 0] + verts[i+1, 0]) * step
y += (verts[i, 1] + verts[i+1, 1]) * step
if area == 0: area += 0.01
return np.array([ (1/(3*area))*x, (1/(3*area))*y ])
def lloyd_iterate(X):
voronoi = Voronoi(X, qhull_options='Qbb Qc Qx')
centroids = []
for i in voronoi.regions:
region = voronoi.vertices[i + [i[0]]]
centroids.append( find_centroid( region ) )
return np.array(centroids)
def plot(X, name):
'''Plot the Voronoi map of 2D numpy array X'''
v = Voronoi(X, qhull_options='Qbb Qc Qx')
plot = voronoi_plot_2d(v, show_vertices=False, line_colors='y', line_alpha=0.5, point_size=5)
plot.set_figheight(14)
plot.set_figwidth(20)
plt.axis([-10, 10, -10, 10])
if not os.path.exists('plots'): os.makedirs('plots')
plot.savefig( 'plots/' + str(name) + '.png' )
# get 1000 observations in two dimensions and plot their Voronoi map
X = np.random.rand(1000, 4)
X = umap.UMAP().fit_transform(X)
plot(X, 0)
# run several iterations, plotting each result
for i in range(20):
X = lloyd_iterate(X)
plot(X, i)
我是否忽略了某些东西,或者这里发生了什么有趣的事情?其他人可以提供的任何见解将不胜感激。