我正在尝试迭代数据集批次并在预训练模型上运行推理。我创建了一个会话并像这样加载模型:
import numpy as np
sess = tf.Session()
saver = tf.train.import_meta_graph('model_resnet/imagenet.ckpt.meta')
saver.restore(sess, "model_resnet/imagenet.ckpt")
# To view the graph in tensorboard:
summary_writer = tf.summary.FileWriter("/tmp/tensorflow_logdir", graph=tf.get_default_graph())
# To retrieve outputs of layer while inferring
def getActivations(layer,stimuli):
units = sess.run(layer,feed_dict={"Placeholder_:0": stimuli, keep_prob:1.0})
# Convert to TF Dataset
dataset_train = tf.data.Dataset.from_tensor_slices((X_train, y_train))
dataset_test = tf.data.Dataset.from_tensor_slices((X_test, y_test))
# Create batches
dataset = dataset_train.batch(32)
# Iterator to iterate over images in batch
iterator = dataset.make_one_shot_iterator()
next_element = iterator.get_next()
try:
getActivations("resnet/pool:0",sess.run(next_element[1]))
except tf.errors.OutOfRangeError:
print("End of dataset") # ==> "End of dataset"
我收到此错误:
ValueError: GraphDef 不能大于 2GB。
我可能误解了图表的确切含义。我不明白为什么对 32 幅图像进行一次迭代会导致图中的扩展。我的操作是否添加到预训练模型图中?根据我到目前为止所遇到的情况,向 TF Graph 添加操作是使用 add 或 tf.'function_name' 完成的,这是正确的吗?
任何帮助或指向示例的指针将不胜感激。
谢谢。