假设您有一个这样的数据框:
>>> df = pd.DataFrame({
'epoch_minute': [i for i in reversed(range(25090627,25635267))],
'count': [random.randint(11, 35) for _ in range(25090627,25635267)]})
>>> df.head()
epoch_minute count
0 25635266 12
1 25635265 20
2 25635264 33
3 25635263 11
4 25635262 35
和一些像这样的相对纪元分钟增量:
day = 1440
week = 10080
month = 302400
如何完成此代码块的等效项:
for i,r in df.iterrows():
if r['epoch_minute'] - day in df['epoch_minute'].values and \
r['epoch_minute'] - week in df['epoch_minute'].values and \
r['epoch_minute'] - month in df['epoch_minute'].values:
# do stuff
使用这种语法:
valid_rows = df.loc[(df['epoch_minute'] == df['epoch_minute'] - day) &
(df['epoch_minute'] == df['epoch_minute'] - week) &
(df['epoch_minute'] == df['epoch_minute'] - month]
我理解为什么loc
选择不起作用,但我只是问是否存在一种更优雅的方法来选择有效行而不遍历数据框的行。