在教程中:https : //blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html 我们有一层 seq2seq 模型。我想扩展这个模型,在编码器侧增加一层,在解码器侧增加一层。训练似乎正在发挥作用,但是我无法在多层正确的推理设置中获得解码器。这是我对教程中提到的模型的更改。
编码器:
encoder_inputs = Input(shape=(None, num_encoder_tokens))
encoder1 = LSTM(
latent_dim,
return_sequences=True
)
encoder2 = LSTM(
latent_dim,
return_state=True,
)
x=encoder1(encoder_inputs)
encoder_outputs, state_h, state_c = encoder2(x)
解码器:
encoder_states = [state_h, state_c]
# Set up the decoder, using `encoder_states` as initial state.
decoder_inputs = Input(shape=(None, num_decoder_tokens))
# We set up our decoder to return full output sequences,
# and to return internal states as well. We don't use the
# return states in the training model, but we will use them in inference.
decoder1 = LSTM(
latent_dim,
return_sequences=True
)
decoder2 = LSTM(
latent_dim,
return_sequences=True, return_state=True
)
dx = decoder1(decoder_inputs, initial_state=encoder_states)
decoder_outputs, _, _ = decoder2(dx)
decoder_dense = Dense(num_decoder_tokens, activation='softmax')
decoder_outputs = decoder_dense(decoder_outputs)
# decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
# Define the model that will turn
# `encoder_input_data` & `decoder_input_data` into `decoder_target_data`
model = Model([encoder_inputs, decoder_inputs], decoder_outputs)
推理(这是我不知道如何创建具有多层的解码器的部分)当前不起作用的实现如下:
encoder_model = Model(encoder_inputs, encoder_states)
decoder_state_input_h = Input(shape=(latent_dim,))
decoder_state_input_c = Input(shape=(latent_dim,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
out_decoder1 = LSTM(
latent_dim,
return_sequences=True, return_state=True
)
out_decoder2 = LSTM(
latent_dim,
return_sequences=True, return_state=True
)
odx = out_decoder1(decoder_inputs, initial_state=decoder_states_inputs)
decoder_lstm = LSTM(latent_dim, return_sequences=True, return_state=True)
decoder_outputs, state_h, state_c = out_decoder2(odx)
#decoder_outputs, state_h, state_c = decoder_lstm(decoder_inputs, initial_state=decoder_states_inputs)
decoder_states = [state_h, state_c]
decoder_outputs = decoder_dense(decoder_outputs)
decoder_model = Model(
[decoder_inputs] + decoder_states_inputs,
[decoder_outputs] + decoder_states)
# Reverse-lookup token index to decode sequences back to
# something readable.
reverse_input_char_index = dict(
(i, char) for char, i in input_token_index.items())
reverse_target_char_index = dict(
(i, char) for char, i in target_token_index.items())
def decode_sequence(input_seq):
# Encode the input as state vectors.
states_value = encoder_model.predict(input_seq)
# Generate empty target sequence of length 1.
target_seq = np.zeros((1, 1, num_decoder_tokens))
# Populate the first character of target sequence with the start character.
target_seq[0, 0, target_token_index['\t']] = 1.
# Sampling loop for a batch of sequences
# (to simplify, here we assume a batch of size 1).
stop_condition = False
decoded_sentence = ''
while not stop_condition:
output_tokens, h, c = decoder_model.predict(
[target_seq] + states_value)
# Sample a token
sampled_token_index = np.argmax(output_tokens[0, -1, :])
print(output_tokens)
print(sampled_token_index)
sampled_char = reverse_target_char_index[sampled_token_index]
decoded_sentence += sampled_char
# Exit condition: either hit max length
# or find stop character.
if (sampled_char == '\n' or
len(decoded_sentence) > max_decoder_seq_length):
stop_condition = True
# Update the target sequence (of length 1).
target_seq = np.zeros((1, 1, num_decoder_tokens))
target_seq[0, 0, sampled_token_index] = 1.
# Update states
states_value = [h, c]
return decoded_sentence
for seq_index in range(1):
# Take one sequence (part of the training set)
# for trying out decoding.
input_seq = encoder_input_data[seq_index: seq_index + 1]
decoded_sentence = decode_sequence(input_seq)
print('-')
print('Input sentence:', input_texts[seq_index])
print('Decoded sentence:', decoded_sentence)
谢谢