0

我有一个包含日期、资产和价格/数量数据的 DataFrame。我试图从 7 天前提取数据,但问题是我不能使用 shift(),因为我的表中缺少日期。

 date   cusip   price   price_7daysago
1/1/2017    a   1   
1/1/2017    b   2   
1/2/2017    a   1.2 
1/2/2017    b   2.3 
1/8/2017    a   1.1         1
1/8/2017    b   2.2         2

我尝试创建一个 lambda 函数来尝试使用 loc 和 timedelta 来创建这种移位,但我只能输出空的 numpy 数组:

def row_delta(x, df, days, colname):
    if datetime.strptime(x['recorddate'], '%Y%m%d') - timedelta(days) in [datetime.strptime(x,'%Y%m%d') for x in   df['recorddate'].unique().tolist()]:
        return df.loc[(df['recorddate_date'] == df['recorddate_date'] - timedelta(days)) & (df['cusip'] == x['cusip']) ,colname]
    else:
        return 'nothing'

我也想过做类似的事情填补缺失的日期,但我的问题是我有多个索引、日期和 cusips,所以我不能只重新索引这个。

4

2 回答 2

2

mergeDataFrame右侧框架的日期列中添加 7 天。使用suffixes参数适当地命名列。

import pandas as pd

df['date'] = pd.to_datetime(df.date)
df.merge(df.assign(date = df.date+pd.Timedelta(days=7)), 
         on=['date', 'cusip'],
         how='left', suffixes=['', '_7daysago'])

输出:df

        date cusip  price  price_7daysago
0 2017-01-01     a    1.0             NaN
1 2017-01-01     b    2.0             NaN
2 2017-01-02     a    1.2             NaN
3 2017-01-02     b    2.3             NaN
4 2017-01-08     a    1.1             1.0
5 2017-01-08     b    2.2             2.0
于 2018-09-21T01:33:28.093 回答
0

您可以将dateand设置cusip为索引并一起使用unstackandshift

shifted = df.set_index(["date", "cusip"]).unstack().shift(7).stack()

然后简单地shifted与您的原始合并df

于 2018-09-21T01:47:13.757 回答