0

我之前的问题的概括中,如何对单元元素(它们本身是并且应该保持数组本身)执行加权平均?


我将首先像这样修改gnovice 的答案

dim = ndims(c{1});          %# Get the number of dimensions for your arrays
M = cat(dim+1,c{:});        %# Convert to a (dim+1)-dimensional matrix
meanArray = sum(M.*weigth,dim+1)./sum(weigth,dim+1);  %# Get the weighted mean across arrays

在此之前确保weight具有正确的形状。我认为需要处理的三种情况是

  1. weight = 1(或任何常数)=> 返回通常的平均值
  2. numel(weight) == length(c) => weight 是每个单元元素 c{n} (但对于固定 n 的每个数组元素相等)
  3. numel(weight) == numel(cell2mat(c)) => 每个数组元素都有自己的权重...

案例 1 很简单,案例 3 不太可能发生,所以目前我对案例 2 感兴趣:如何将权重转换为一个数组,使得M.*weight上述总和具有正确的维度?当然,也可以理解显示获得加权平均值的另一种方法的答案。


编辑事实上,如果权重与 c 具有相同的结构,则案例 3 甚至比案例 1更微不足道(多么重言式,道歉) 。

这是我对案例 2 的意思的示例:

c = { [1 2 3; 1 2 3], [4 8 3; 4 2 6] };
weight = [ 2, 1 ];

应该返回

meanArray = [ 2 4 3; 2 2 4 ]

(例如对于第一个元素 (2*1 + 1*4)/(2+1) = 2)

4

1 回答 1

1

在熟悉REPMAT之后,现在这是我的解决方案:

function meanArray = cellMean(c, weight)
% meanArray = cellMean(c, [weight=1])
% mean over the elements of a cell c, keeping matrix structures of cell
% elements etc. Use weight if given.

% based on http://stackoverflow.com/q/5197692/321973, courtesy of gnovice
% (http://stackoverflow.com/users/52738/gnovice)
% extended to weighted averaging by Tobias Kienzler
% (see also http://stackoverflow.com/q/5231406/321973)

dim = ndims(c{1});          %# Get the number of dimensions for your arrays
if ~exist('weight', 'var') || isempty(weight); weight = 1; end;
eins = ones(size(c{1})); % that is german for "one", creative, I know...
if ~iscell(weight)
    % ignore length if all elements are equal, this is case 1
    if isequal(weight./max(weight(:)), ones(size(weight)))
        weight = repmat(eins, [size(eins)>0 length(c)]);
    elseif isequal(numel(weight), length(c)) % case 2: per cell-array weigth
        weight = repmat(shiftdim(weight, -3), [size(eins) 1]);
    else
        error(['Weird weight dimensions: ' num2str(size(weight))]);
    end
else % case 3, insert some dimension check here if you want
    weight = cat(dim+1,weight{:});
end;

M = cat(dim+1,c{:});        %# Convert to a (dim+1)-dimensional matrix
sumc = sum(M.*weight,dim+1);
sumw = sum(weight,dim+1);
meanArray = sumc./sumw;  %# Get the weighted mean across arrays
于 2011-03-09T10:31:03.167 回答