我正在使用多处理 python 库为机器学习问题并行运行特征选择。此函数接受 pandas 数据框作为输入并返回一些数字。
当我使用mp.pool.map()
一切顺利执行此功能时。但是,如果我用它替换它mp.pool.ThreadPool.map()
会失败并出现以下错误:
AssertionError: Number of manager items must equal union of block items
# manager items: 15, # tot_items: 20
.
奇怪的是,ThreadPool
直到昨天我都在正常运行代码。然后,我尝试重新运行它并开始收到这些错误。我需要ThreadPool
,因为这是一个 IO 绑定作业,与pool
.
编辑:代码是这样的(python 2.7):
import multiprocessing as mp
import pandas as pd (version 0.22.0)
def main_functionality(df, params):
df = df[params['feature']]
#Run 5-fold cross-validation
data_df = pd.DataFrame(....)
pred_df = pred_df.append(data_df)
return statistics from pred_df
def a_function(df_init, feature, params_init):
params = dict(params_init)
df = df_init.copy()
params['feature'] = feature
try:
results = main_functionality(df, params)
except:
results = (0,0,0)
return results
def b_function(df, features):
pool = mp.pool.ThreadPool(4)
params = {...}
results = pool.map(a_function,(df, feature, params) for f in features))
results_df = pd.DataFrame(results)
results_df.to_csv(...)
if __name__ == '__main__':
df = read.csv(...) # A big CSV file (i.e. few GBs)
features = [i for i in df.columns if i ....]
b_function(df, features)