2

我目前正在试验ORB SLAM 2和这样的立体相机。我为左右摄像头/图像使用分辨率为 640x480 像素的 2.8 毫米和可选的 3.6 毫米镜头。

ORB SLAM 2 让我可以使用设置文件 (*.yaml) 定义几个失真/校正参数,例如:

fx, fy, cx, cy
k1, k2, p1, p2

我使用此处描述的棋盘(9x7 内角和 70mm 正方形长度)进行了 OpenCV 相机校准。后来我使用了 MRPT 的这个自动校准程序,它给了我相同的结果,但绊脚石更少。

然而,ORB SLAM 2 允许我定义这些附加参数来预校正图像(如果我理解正确的话):

D: 1x5 Matrix -> Distortion Coefficients aquired from calibration (fx,fy,cx,cy) ?
K: 3x3 Matrix -> Intrinsic Matrix aquired from calibration (k1,k2,p1,p2,k3) ?
R: 3x3 Matrix -> Rectification Transformation ?
P: 3x4 Matrix -> New Projection Matrix ?

我的问题如下(请参阅下面的示例 settings.yaml 文件):

A.)我的假设是否正确,即是D从棋盘校准程序中获得的?distortion coefficientsKintrinsic matrix

B.)定义, fx, fy,cx是否足以预校正图像并成功运行 ORB SLAM 2 ?cysettings.yaml

C.) ORB SLAM 2 的成功运行需要R和矩阵吗?P

D.)我怎样才能获得RP矩阵?带有检查板的 OpenCV 相机校准程序没有为我提供这些矩阵,对吗?

以下是上述settings.yamlORB SLAM 2 文件的示例:

%YAML:1.0

#--------------------------------------------------------------------------------------------
# Camera Parameters. Adjust them!
#--------------------------------------------------------------------------------------------

# Camera calibration and distortion parameters (OpenCV) 
Camera.fx: 646.53807309613160
Camera.fy: 647.36136487241527
Camera.cx: 320.94123353073792
Camera.cy: 219.07092188981900

Camera.k1: -0.43338537102343577
Camera.k2: 0.46801812273859494
Camera.p1: 0.0039978632628183738
Camera.p2: 0.00023265675941025371

Camera.width: 640
Camera.height: 480

# Camera frames per second 
Camera.fps: 20.0

# stereo baseline times fx
Camera.bf: 38.76

# Color order of the images (0: BGR, 1: RGB. It is ignored if images are grayscale)
Camera.RGB: 1

# Close/Far threshold. Baseline times.
ThDepth: 50

#--------------------------------------------------------------------------------------------
# Stereo Rectification. Only if you need to pre-rectify the images.
# Camera.fx, .fy, etc must be the same as in LEFT.P
#--------------------------------------------------------------------------------------------
LEFT.width: 640
LEFT.height: 480
LEFT.D: !!opencv-matrix
   rows: 1
   cols: 5
   dt: d
   data:[-0.28340811, 0.07395907, 0.00019359, 1.76187114e-05, 0.0]
LEFT.K: !!opencv-matrix
   rows: 3
   cols: 3
   dt: d
   data: [458.654, 0.0, 367.215, 0.0, 457.296, 248.375, 0.0, 0.0, 1.0]
LEFT.R:  !!opencv-matrix
   rows: 3
   cols: 3
   dt: d
   data: [0.999966347530033, -0.001422739138722922, 0.008079580483432283, 0.001365741834644127, 0.9999741760894847, 0.007055629199258132, -0.008089410156878961, -0.007044357138835809, 0.9999424675829176]
LEFT.P:  !!opencv-matrix
   rows: 3
   cols: 4
   dt: d
   data: [435.2046959714599, 0, 367.4517211914062, 0,  0, 435.2046959714599, 252.2008514404297, 0,  0, 0, 1, 0]

RIGHT.width: 640
RIGHT.height: 480
RIGHT.D: !!opencv-matrix
   rows: 1
   cols: 5
   dt: d
   data:[-0.28368365, 0.07451284, -0.00010473, -3.555907e-05, 0.0]
RIGHT.K: !!opencv-matrix
   rows: 3
   cols: 3
   dt: d
   data: [457.587, 0.0, 379.999, 0.0, 456.134, 255.238, 0.0, 0.0, 1]
RIGHT.R:  !!opencv-matrix
   rows: 3
   cols: 3
   dt: d
   data: [0.9999633526194376, -0.003625811871560086, 0.007755443660172947, 0.003680398547259526, 0.9999684752771629, -0.007035845251224894, -0.007729688520722713, 0.007064130529506649, 0.999945173484644]
RIGHT.P:  !!opencv-matrix
   rows: 3
   cols: 4
   dt: d
   data: [435.2046959714599, 0, 367.4517211914062, -47.90639384423901, 0, 435.2046959714599, 252.2008514404297, 0, 0, 0, 1, 0]

#--------------------------------------------------------------------------------------------
# ORB Parameters
#--------------------------------------------------------------------------------------------

# ORB Extractor: Number of features per image
ORBextractor.nFeatures: 800

# ORB Extractor: Scale factor between levels in the scale pyramid   
ORBextractor.scaleFactor: 1.2

# ORB Extractor: Number of levels in the scale pyramid  
ORBextractor.nLevels: 8

# ORB Extractor: Fast threshold
# Image is divided in a grid. At each cell FAST are extracted imposing a minimum response.
# Firstly we impose iniThFAST. If no corners are detected we impose a lower value minThFAST
# You can lower these values if your images have low contrast           
ORBextractor.iniThFAST: 12
ORBextractor.minThFAST: 3

#--------------------------------------------------------------------------------------------
# Viewer Parameters
#--------------------------------------------------------------------------------------------
Viewer.KeyFrameSize: 0.05
Viewer.KeyFrameLineWidth: 1
Viewer.GraphLineWidth: 0.9
Viewer.PointSize:2
Viewer.CameraSize: 0.08
Viewer.CameraLineWidth: 3
Viewer.ViewpointX: 0
Viewer.ViewpointY: -0.7
Viewer.ViewpointZ: -1.8
Viewer.ViewpointF: 500
4

1 回答 1

4

在我看来,有几个校准工具箱用于校准单目、立体或多相机。

第一个是ros_camera_calibration。在运行 ORBSLAM 时,我更喜欢使用这个包来获取单个运动相机的内在参数。移动标定板后获取内参和畸变系数以及投影矩阵。

第二个,我最近使用的是Kalibr。它不仅设计用于校准多相机,还可以联合校准相机和惯性测量单元(IMU)。

此外,您还可以使用 MATLAB获取相机的内在参数。

至于你的问题,这里是我不完美的答案。

QA: K(fx, fy, cx,cy)代表相机的内在参数和畸变系数是k1,k2,p1.p2分开的。

QB:就我而言,获得内在参数,包括fx、fy、cx、cy,足以用你自己的相机运行ORBSLAM2。

QC&D,如果你选择使用这个ROS包,最后你会得到投影矩阵和整流变换。

于 2018-10-07T08:23:43.400 回答