这是一个艰难的过程,但我已经被困了 2 周,如果有人可以帮助我,我将不胜感激。基本上,我有一个电子表格,其中第一行是这样的(我无法在此处粘贴电子表格并以可理解的方式保持其格式):A1=Material, B1=Jan/15, C1=Feb/15 , ..., AW=Dec/18。材料清单(A 列)从 A2 一直到 A6442,每一行都有一个零件编号。从 B2:B6442 开始,每行代表每个零件的数量。因此,B2:AW2 行将是 B1 部分从 jan/15 到 dec/18 的消耗。
考虑到上述情况,我想要做的是遍历每一行,应用 def (triple_exponential_smoothing) 并将系列中的最后 6 个数字返回到 Excel,在单元格 AR 到 AW 上(例如,对于第二行,AR2: AW2)。我将使用前 3.5 年 (B2:AQ2) 作为一年中剩余 6 个月 (AR2:AW2) 的计算基础。当我使用定义的范围(如下所示)运行它时,它可以工作:
series = xw.Range((2,2),(2, 37)).value
相反,当我运行循环时,我什至无法从函数中获取输出,更不用说将其写回 Excel。到目前为止,我的代码如下:
import os
import xlwings as xw
#Defining folder
os.chdir('G:\...\Reports')
#importing data
wb = xw.Book('sheet.xlsx')
sht = wb.sheets['sheet']
series = [sht.range((i,2),(i, 37)).value for i in range(2, 6443)]
# Holt Winters formula
def initial_trend(series, slen):
sum = 0.0
for i in range(slen):
sum += float(series[i+slen] - series[i]) / slen
return sum / slen
def initial_seasonal_components(series, slen):
seasonals = {}
season_averages = []
n_seasons = int(len(series)/slen)
# compute season averages
for j in range(n_seasons):
season_averages.append(sum(series[slen*j:slen*j+slen])/float(slen))
# compute initial values
for i in range(slen):
sum_of_vals_over_avg = 0.0
for j in range(n_seasons):
sum_of_vals_over_avg += series[slen*j+i]-season_averages[j]
seasonals[i] = sum_of_vals_over_avg/n_seasons
return seasonals
def triple_exponential_smoothing(series, slen, alpha, beta, gamma, n_preds):
result = []
seasonals = initial_seasonal_components(series, slen)
for i in range(len(series)+n_preds):
if i == 0: # initial values
smooth = series[0]
trend = initial_trend(series, slen)
result.append(series[0])
continue
if i >= len(series): # we are forecasting
m = i - len(series) + 1
result.append((smooth + m*trend) + seasonals[i%slen])
else:
val = series[i]
last_smooth, smooth = smooth, alpha*(val-seasonals[i%slen]) + (1-alpha)*(smooth+trend)
trend = beta * (smooth-last_smooth) + (1-beta)*trend
seasonals[i%slen] = gamma*(val-smooth) + (1-gamma)*seasonals[i%slen]
result.append(smooth+trend+seasonals[i%slen])
return result
#printing results for the function looped through all rows
print(triple_exponential_smoothing(series, 12, 0.96970912, 0.07133329, 0, 12))
我错过了什么吗?我愿意接受其他方式,只要我能一次完成所有的行。
谢谢大家。