除了下面这个小程序的垃圾输出,我什么也得不到。我想做的就是
- 加载和解码 jpeg 图像
- 使用将其调整为 (224, 224)
tf.resize_bilinear
- 将其重新编码为 jpeg 并将其保存到文件中
将张量流导入为 tf
将 numpy 导入为 np
导入操作系统
从 PIL 导入图像
cur_dir = os.getcwd()
print("resizing images")
print("current directory:",cur_dir)
def modify_image(image):
resize_shape = tf.stack([224, 224])
resize_shape_as_int = tf.cast(resize_shape, dtype=tf.int32)
#resized = tf.image.resize_bilinear(decoded_image_4d, resize_shape_as_int)
resized = tf.image.resize_images(image, resize_shape_as_int)
#image_3d = tf.squeeze(resized, squeeze_dims=[0])
image_3d = tf.image.convert_image_dtype(resized, tf.uint8, saturate=False)
return image_3d
def read_image(filename_queue):
reader = tf.WholeFileReader()
key,value = reader.read(filename_queue)
image = tf.image.decode_jpeg(value)
return key,image
def inputs(args):
filenames = args.input_files
filename_queue = tf.train.string_input_producer(filenames)
filename,read_input = read_image(filename_queue)
reshaped_image = modify_image(read_input)
img = tf.image.encode_jpeg(reshaped_image)
return filename,img
def parse_args():
a = argparse.ArgumentParser()
a.add_argument('input_files', nargs='+')
args = a.parse_args()
return args
def main():
args = parse_args()
with tf.Graph().as_default():
image = inputs(args)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
tf.train.start_queue_runners(sess=sess)
filename,img = sess.run(image)
with open(os.path.join(cur_dir, 'output.jpg'), 'wb') as fh:
fh.write(img)
if __name__ == '__main__':
main()
我只是得到垃圾数据,像这样的输出