/* Program to demonstrate gaussian <strong class="highlight">elimination</strong>
on a set of linear simultaneous equations
*/
#include <iostream>
#include <cmath>
#include <vector>
using namespace std;
const double eps = 1.e-15;
/*Preliminary pivoting strategy
Pivoting function
*/
double pivot(vector<vector<double> > &a, vector<double> &b, int i)
{
int n = a.size();
int j=i;
double t=0;
for(int k=i; k<n; k+=1)
{
double aki = fabs(a[k][i]);
if(aki>t)
{
t=aki;
j=k;
}
}
if(j>i)
{
double dummy;
for(int L=0; L<n; L+=1)
{
dummy = a[i][L];
a[i][L]= a[j][L];
a[j][L]= dummy;
}
double temp = b[j];
b[i]=b[j];
b[j]=temp;
}
return a[i][i];
}
/* Forward <strong class="highlight">elimination</strong> */
void triang(vector<vector<double> > &a, vector<double> &b)
{
int n = a.size();
for(int i=0; i<n-1; i+=1)
{
double diag = pivot(a,b,i);
if(fabs(diag)<eps)
{
cout<<"zero det"<<endl;
return;
}
for(int j=i+1; j<n; j+=1)
{
double mult = a[j][i]/diag;
for(int k = i+1; k<n; k+=1)
{
a[j][k]-=mult*a[i][k];
}
b[j]-=mult*b[i];
}
}
}
/*
DOT PRODUCT OF TWO VECTORS
*/
double dotProd(vector<double> &u, vector<double> &v, int k1,int k2)
{
double sum = 0;
for(int i = k1; i <= k2; i += 1)
{
sum += u[i] * v[i];
}
return sum;
}
/*
BACK SUBSTITUTION STEP
*/
void backSubst(vector<vector<double> > &a, vector<double> &b, vector<double> &x)
{
int n = a.size();
for(int i = n-1; i >= 0; i -= 1)
{
x[i] = (b[i] - dotProd(a[i], x, i + 1, n-1))/ a[i][i];
}
}
/*
REFINED GAUSSIAN <strong class="highlight">ELIMINATION</strong> PROCEDURE
*/
void gauss(vector<vector<double> > &a, vector<double> &b, vector<double> &x)
{
triang(a, b);
backSubst(a, b, x);
}
// EXAMPLE MAIN PROGRAM
int main()
{
int n;
cin >> n;
vector<vector<double> > a;
vector<double> x;
vector<double> b;
for (int i = 0; i < n; i++) {
vector<double> temp;
for (int j = 0; j < n; j++) {
int no;
cin >> no;
temp.push_back(no);
}
a.push_back(temp);
b.push_back(0);
x.push_back(0);
}
/*
for (int i = 0; i < n; i++) {
int no;
cin >> no;
b.push_back(no);
x.push_back(0);
}
*/
gauss(a, b, x);
for (size_t i = 0; i < x.size(); i++) {
cout << x[i] << endl;
}
return 0;
}
上面的高斯消除算法在 NxN 矩阵上运行良好。但我需要它来处理 NxM 矩阵。任何人都可以帮我做吗?我数学不是很好。我在某个网站上得到了这个代码,我被困在它上面。