问题
我的应用程序正在提取内存中的 zip 文件列表并将数据写入临时文件。然后我将临时文件中的数据进行内存映射,以便在另一个函数中使用。当我在单个进程中执行此操作时,它工作正常,读取数据不会影响内存,最大 RAM 约为 40MB。但是,当我使用 concurrent.futures 执行此操作时,RAM 会增加到 500MB。
我看过这个例子,我知道我可以在处理过程中以更好的方式提交作业以节省内存。但我不认为我的问题是相关的,因为我在处理过程中没有耗尽内存。我不明白的问题是为什么即使在返回内存映射后它仍然保留内存。我也不了解内存中的内容,因为在单个进程中执行此操作不会将数据加载到内存中。
谁能解释内存中的实际内容以及为什么单处理和并行处理之间存在差异?
PS我用来memory_profiler
测量内存使用情况
代码
主要代码:
def main():
datadir = './testdata'
files = os.listdir('./testdata')
files = [os.path.join(datadir, f) for f in files]
datalist = download_files(files, multiprocess=False)
print(len(datalist))
time.sleep(15)
del datalist # See here that memory is freed up
time.sleep(15)
其他功能:
def download_files(filelist, multiprocess=False):
datalist = []
if multiprocess:
with concurrent.futures.ProcessPoolExecutor(max_workers=4) as executor:
returned_future = [executor.submit(extract_file, f) for f in filelist]
for future in returned_future:
datalist.append(future.result())
else:
for f in filelist:
datalist.append(extract_file(f))
return datalist
def extract_file(input_zip):
buffer = next(iter(extract_zip(input_zip).values()))
with tempfile.NamedTemporaryFile() as temp_logfile:
temp_logfile.write(buffer)
del buffer
data = memmap(temp_logfile, dtype='float32', shape=(2000000, 4), mode='r')
return data
def extract_zip(input_zip):
with ZipFile(input_zip, 'r') as input_zip:
return {name: input_zip.read(name) for name in input_zip.namelist()}
数据的帮助代码
我无法分享我的实际数据,但这里有一些简单的代码来创建演示问题的文件:
for i in range(1, 16):
outdir = './testdata'
outfile = 'file_{}.dat'.format(i)
fp = np.memmap(os.path.join(outdir, outfile), dtype='float32', mode='w+', shape=(2000000, 4))
fp[:] = np.random.rand(*fp.shape)
del fp
with ZipFile(outdir + '/' + outfile[:-4] + '.zip', mode='w', compression=ZIP_DEFLATED) as z:
z.write(outdir + '/' + outfile, outfile)